

Lecture Notes in Computer Science 3647
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Walter Dosch Roger Y. Lee
Chisu Wu (Eds.)

Software Engineering
Research, Management
and Applications

Second International Conference, SERA 2004
Los Angeles, CA, USA, May 5-7, 2004
Selected Revised Papers

13

Volume Editors

Walter Dosch
University of Lübeck
Institute of Software Technology and Programming Languages
Ratzeburger Allee 160, 23538 Lübeck, Germany
E-mail: dosch@isp.uni-luebeck.de

Roger Y. Lee
Central Michigan University
Software Engineering and Information Technology Institute
Mt.Pleasant,MI 48858, P.O. Box , USA
E-mail: lee@cps.cmich.edu

Chisu Wu
Seoul National University
School of Computer Science and Engineering
Seoul 151-742, South Korea
E-mail: wuchisu@selab.snu.ac.kr

Library of Congress Control Number: 2005939044

CR Subject Classification (1998): D.2, I.2.11, C.2.4, H.5.2-3, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-32133-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32133-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11668855 06/3142 5 4 3 2 1 0

Foreword

It was our great pleasure to extend a welcome to all who participated in SERA 2004,
the second International Conference on Software Engineering Research, Management
and Applications, held at the Omni Hotel, Los Angeles, California, USA. The
conference would not have been possible without the cooperation of Seoul National
University, Korea, the University of Lübeck, Germany, and Central Michigan
University, USA. SERA 2004 was sponsored by the International Association for
Computer and Information Science (ACIS).

The conference brought together researchers, practitioners, and advanced graduate
students to exchange and share their experiences, new ideas, and research results in
all aspects (theory, applications, and tools) of Software Engineering Research
and Applications. At this conference, we had keynote speeches by Barry Boehm,
C.V. Ramamoorthy, Raymond Yeh, and Con Kenney.

We would like to thank the publicity chairs, the members of our program
committees, and everyone else who helped with the conference for their hard work
and time dedicated to SERA 2004. We hope that SERA 2004 was enjoyable for all
participants.

Barry Boehm
May 2004

Preface

The 2nd ACIS International Conference on Software Engineering – Research,
Management and Applications (SERA 2004) was held at the Omni Hotel in Los
Angeles, California, during May 5–7, 2004. The conference particularly welcomes
contributions at the junction of theory and practice disseminating basic research with
immediate impact on practical applications. The SERA conference series has
witnessed a short, but successful history:

SERA 2003 San Francisco, California June 25–27, 2003
SERA 2004 Los Angeles, California May 5–7, 2004
SERA 2005 Mt. Pleasant, Michigan August 11–13, 2005

The conference covers a broad range of topics from the field of software

engineering including theory, methods, applications, and tools. The conference
received 103 submissions from the scientific community in 18 different countries all
over the world. Each paper was evaluated by three members of the International
Program Committee and additional referees judging the originality, significance,
technical contribution, and presentation style. After the completion of the review
process 46 papers were selected for presentation at the conference which gave us an
acceptance rate of about 45%.

The conference was structured into 14 sessions running in two parallel tracks. The
conference sessions covered the following topics: formal methods and tools, data
mining and knowledge discovery, requirements engineering, component-based
software engineering, object-oriented technology and software architectures, Web
engineering and Web-based applications, software reuse and software metrics, agent
technology and information engineering, reverse engineering, communication systems
and middleware design, XML applications and multimedia computing, parallel and
distributed computing, and cost modelling and analysis.

Based on the opinion of the Program Committee and the recommendations of the
session chairs, authors of selected papers were invited to submit a substantially
revised and extended version for inclusion in the postconference proceedings. The
submissions were subject to a second refereeing process. With great pleasure, we
finally present 18 papers that were accepted for publication in Springer’s LNCS as the
post-conference proceedings.

We would like to express our sincere thanks to the Honorary General Chair Barry
Boehm and to the Conference Chair Con Kenney. We appreciate the dedication of
Barry Boem, C.V. Ramamoorthy, Raymond T. Yeh, and Con Kenney in contributing
keynote speeches. We gratefully acknowledge the professional work of the
International Program Committee and the subreviewers. We thank the Publicity
Chairs for their commitment and, finally, the editorial staff at Springer for the smooth
cooperation.

June 2005 Walter Dosch,
Roger Y. Lee,

Chisu Wu

Organizing Committee

Honorary General Chair

Dr. Barry Boehm
Directory, USC Center for Software
Engineering
University of Southern California
(USA)

Conference Chair

Dr. Con Kenney
Chief IT Enterprise Architect Federal
Aviation Administration (USA)

Program Co-chairs

Prof. Roger Lee
Computer Science Department Central
Michigan University (USA)

Prof. Chisu Wu Computer Science &
Engineering National University
(Seoul, Korea)

Prof. Dr. Walter Dosch Institute of
Software Technology & Programming
Languages University of Lubeck
(Germany)

Publicity Chairs

Canada
Sylvanus Ehikioya
University of Manitoba

France
Pascale Minet
INRIA, France

Hong Kong, China
Pak Lok Poon

Hong Kong Polytechnic University

Italy
Susanna Pelagatti
University of Pisa

Japan
Naohiro Ishii
Aichi Institute of Technology

Korea
Haeng-Kon Kim
Catholic University of Daegu

Lebanon
Ramzi Haraty
Lebanese American University

Spain
Ana Moreno
Universidad Politecnica de Madrid

USA
Lawrence Chung University of Texas-
Dallas

X Organization

International Program Committee

Doo-Hwan Bae
(KAIST, Korea)

Jongmoon Baik
(Motorola Labs, USA)

Ken Barker
(Univ. of Calgary, Canada)

Chia-Chu Chiang
(University of Arkansas-Little Rock,
USA)

Byoungju Choi
(Ewha Womans University, Korea)

Lawrence Chung
(University of Texas-Dallas, USA)

Jozo Dujmovic
(San Francisco State University,
USA)

Sylvanus Ehikioya
(University of Manitoba, Canada)

Paul Garratt
(University of Southampton, UK)

Gonzhu Hu
(Central Michigan University, USA)

Chih Cheng Hung
(Southern Polytechnic State Univ.,
USA)

Naohiro Ishii
(Aichi Institute of Technology, Japan)

Taewoong Jeon
(Korea University, Korea)

Lianxing Jia

(Univ. of Manchester, UK)

Soo-Dong Kim
(Soongsil University, Korea)

Tai-Hoon Kim
(Korea Information Security Agency,
Korea)

Juhnyoung Lee
(IBM T.J. Watson Research Center, USA)

Jun Li
(University of Oregon, USA)

Brian Malloy
(Clemson University, USA)

Pascale Minet
(INRIA, France)

Ana Moreno
(Universidad Politecnica de Madrid,
Spain)

Nohpill Park
(Oklahoma State University, USA)

Susanna Pelagatti
(University of Pisa, Italy)

Frantisek Plasil
(Charles University, Czech Republic)

Vinod Prasad
(Bradley University, USA)

David Primeaux
(Virginia Commonwealth University,
USA)

Stuart Rubin
(SPAWAR, USA)

Laura Simini
(University of Pisa, Italy)

 Organization XI

Gyu-Sang Shin
(ETRI, Korea)

Wei Wang
(University of North Carolina-Chapel
Hill, USA)

Cheol Jung Yoo
(Chonbuk National University, Korea)

Cui Zhang
(California State University-Sacramento,
USA)

ZhiQuan Zhou
(Swinburne University, Australia)

Table of Contents

Formal Methods and Tools

Transforming Stream Processing Functions into State Transition
Machines

Walter Dosch, Annette Stümpel . 1

NuEditor - A Tool Suite for Specification and Verification of NuSCR
Jaemyung Cho, Junbeom Yoo, Sungdeok Cha . 19

Requirements Engineering and Reengineering

Representing NFRs and FRs: A Goal-Oriented and Use Case Driven
Approach

Lawrence Chung, Sam Supakkul . 29

MARMI-RE: A Method and Tools for Legacy System Modernization
Eun Sook Cho, Jung Eun Cha, Young Jong Yang 42

Component-Based Software Engineering

A Study on Frameworks of Component Integration for Web
Applications

Haeng-Kon Kim, Hae-Sool Yang, Roger Y. Lee 58

Software Process Models, Management and
Improvement

A Study on Metrics for Supporting the Software Process Improvement
Based on SPICE

Sun-Myung Hwang, Hye-Mee Kim . 71

Information Engineering

Uniformly Handling Metadata Registries
Dongwon Jeong, Young-Gab Kim, Soo-Hyun Park,
Doo-Kwon Baik . 81

XIV Table of Contents

Network Layer XML Routing Using Lazy DFA
Jie Dai, Kexiao Liao, Gongzhu Hu . 92

Web Engineering and Web-Based Applications

Extending UML for a Context-Based Navigation Modeling Framework
of Web Information Systems

Jeewon Hong, Byungjeong Lee, Heechern Kim, Chisu Wu 108

Conversion of Topic Map Metadata to RDF Metadata for Knowledge
Retrieval on the Web

Shinae Shin, Dongwon Jeong, Doo-Kwon Baik . 123

An Integrated Software Development Environment for Web
Applications

Byeongdo Kang . 138

Parallel and Distributed Computing

On the Design and Implementation of Parallel Programs Through
Coordination

Chia-Chu Chiang, Roger Y. Lee, Hae-Sool Yang 156

Software Reuse and Metrics

Reusability Analysis of Four Standard Object-Oriented Class Libraries
Saeed Araban, A.S.M. Sajeev . 171

Validation of an Approach for Quantitative Measurement and
Prediction Model

Ki-won Song, Jeong-hwan Park, Kyung-whan Lee 187

Object-Oriented Technology and Information
Technology

Slicing JavaTM Programs Using the JPDA and Dynamic Object
Relationship Diagrams with XML

Adam J. Conover, Yeong-Tae Song . 201

Infrastructures for Information Technology Systems: Perspectives on
Their Evolution and Impact

C.V. Ramamoorthy, Remzi Seker . 214

Table of Contents XV

Communications Systems and Networks

The Trajectory Approach for the End-to-End Response Times with
Non-preemptive FP/EDF

Steven Martin, Pascale Minet, Laurent George . 229

Web Service Based Inter-AS Connection Managements for
QoS-Guaranteed DiffServ Provisioning

Young-Tak Kim, Hyun-Ho Shin . 248

Author Index . 261

Transforming Stream Processing Functions

into State Transition Machines

Walter Dosch and Annette Stümpel

Institute of Software Technology and Programming Languages,
University of Lübeck, Germany

http://www.isp.uni-luebeck.de

Abstract. The black-box view of an interactive component in a dis-
tributed system concentrates on the input/output behaviour based on
communication histories. The glass-box view discloses the component’s
internal state with inputs effecting an update of the state. The black-box
view is modelled by a stream processing function, the glass-box view by
a state transition machine. We present a formal method for transforming
a stream processing function into a state transition machine with input
and output. We introduce states as abstractions of the input history and
derive the machine’s transition functions using history abstractions. The
state refinement is illustrated with three applications, viz. an iterator
component, a scan component, and an interactive stack.

1 Introduction

A distributed system consists of a network of components that communicate
asynchronously via unidirectional channels. The communication histories are
modelled by sequences of messages, called streams. Streams abstract from dis-
crete or continuous time, since they record only the succession of messages. The
input/output behaviour of a communicating component is described by a stream
processing function [14,15] mapping input histories to output histories.

During the development of a component, the software designer employs dif-
ferent points of view. On the specification level, a component is considered as
a black box whose behaviour is determined by the relation between input and
output histories. The external view is relevant for the service provided to the
environment.

On the implementation level, the designer concentrates on the component’s
internal state where an input is processed by updating the internal state. The in-
ternal view, also called glass-box view, is described by a state transition machine
with input and output.

A crucial design step amounts to transforming the specified behaviour of a
communicating component into a state-based implementation. In our approach,
we conceive machine states as abstractions of the input history. The state stores
information about the input history that influences the component’s output on
future input. In general, there are different abstractions of the input history
which lead to state spaces of different granularity [10] .

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 1–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 W. Dosch and A. Stümpel

This paper presents a formal method, called state refinement, for transform-
ing stream processing functions into state transition machines. The transforma-
tion is grounded on history abstractions which identify subsets of input histories
as the states of the machine. The state refinement preserves the component’s
input/output behaviour, if we impose two requirements. Upon receiving fur-
ther input, a history abstraction must be compatible with the state transitions
and with the generation of the output stream. The formal method supports a
top-down design deriving the state-based implementation from a behavioural
specification in a safe way.

The paper is organized as follows. In Section 2 we summarize the basic notions
for the functional description of interactive components with communication
histories. Section 3 introduces state transition machines with input and output.
Section 4 presents the systematic construction of a state transition machine
that implements a stream processing function in a correctness preserving way.
History abstractions relate input histories to machine states. With their help, the
transition functions of the machine can be derived involving the output extension
of the stream processing function.

In the subsequent sections, we demonstrate the state refinement for different
types of applications. In Section 5 , the transformation of an iterator compo-
nent leads to state transition machines with a trivial state space resulting from
the constant history abstraction. Section 6 presents a general implementation
scheme for scan components based on the reduce function as a history abstrac-
tion. Section 7 discusses the state-based implementation of an interactive stack.
The history abstraction leading to a standard implementation results from com-
bining a control state and a data state in a suitable way.

2 Streams and Stream Processing Functions

In this section we briefly summarize the basic notions about streams and stream
processing functions to render the paper self-contained. The reader is referred to
[24] for a survey and to [25] for a comprehensive treatment. Streams constitute
a basic concept for describing different types of interactive systems [19] .

2.1 Finite Streams

A stream models the communication history of a channel which is determined
by the sequence of data transferred. Untimed streams record only the succession
of messages and provide no further information about the timing.

Given a non-empty set A of data, the set A� of finite communication histories,
for short streams, over A is the least set with respect to set inclusion defined by
the recursion equation

A� = {〈〉} ∪ A ×A� . (1)

A stream is either the empty stream 〈〉 or it is constructed by the prefix operation
� : A × A� → A� attaching an element to the front of a stream. We denote

Transforming Stream Processing Functions into State Transition Machines 3

streams by capital letters and elements of streams by small letters. A stream
X = x1 � x2 � . . . � xn � 〈〉 (n ≥ 0) is denoted by 〈x1, x2, . . . , xn〉 for short.

The concatenation X&Y of two streams X = 〈x1, . . . , xk〉 and Y = 〈y1, . . . ,
yl〉 over the same set A of data yields the stream 〈x1, . . . , xk, y1, . . . , yl〉 of length
k+ l . The concatenation X&〈x〉 appending an element x at the rear of a stream
X is abbreviated as X � x .

2.2 Prefix Order

Operational progress is modelled by the prefix order. The longer stream forms
an extension of the shorter history, and, vice versa, the shorter stream is an
initial segment of the longer stream.

A stream X is called a prefix of a stream Y , denoted X � Y , iff there
exists a stream R with X&R = Y . The set of finite streams over a data set
forms a partial order under the prefix relation with the empty stream as the
least element. Monotonic functions on finite streams possess unique continuous
extensions to infinite streams [18] .

2.3 Stream Processing Functions

The sequence of data passing along a communication channel between two com-
ponents is captured by the notion of a stream. Thus, a deterministic component
which continuously processes data from its input ports and emits data at its
output ports can be considered as a function mapping input histories to output
histories.

A stream processing function f : A� → B� maps an input stream to an
output stream. The input type A and the output type B determine the syntactic
interface of the component.

We require that a stream processing function is monotonic with respect to
the prefix order:

f(X) � f(X&Y) (2)

This property ensures that a prolongation of the input history leads to an ex-
tension of the output history. A communicating component cannot change the
past output when receiving future input.

A stream processing function describes the (input/output) behaviour of a
component.

2.4 Output Extension

A stream processing function characterizes the behaviour of a component on
entire input streams. A finer view reveals the causal relationship between single
elements in the input stream and corresponding segments of the output stream.

The output extension isolates the effect of a single input on the output stream
after processing a prehistory, compare Fig. 1 .

4 W. Dosch and A. Stümpel

f(X � x)

f(X)
εf (X, x)︷ ︸︸ ︷

Fig. 1. Output extension of a stream processing function f

Definition 1. The output extension εf : A� ×A → B� of a stream processing
function f : A� → B� is defined by

f(X � x) = f(X) & εf (X, x) . (3)

The output extension completely determines the behaviour of a stream pro-
cessing function apart from its result for the empty input history.

3 State Transition Machines with Input and Output

The operational behaviour of distributed systems is often formalized by labelled
state transition systems specifying a transition relation between states associ-
ated with labels [27] . The transitions denote memory updates, inputs, outputs,
or other actions. For the purposes of modelling communicating components, we
associate a state transition with receiving an element on the input channel and
sending data to the output channel.

3.1 Architecture of the Machine

A state transition machine reacts on input with an update of the internal state
generating a sequence of outputs.

Definition 2. A state transition machine with input and output, for short a
state transition machine, M = (Q,A,B,next, out , q0) consists of

• a non-empty set Q of states,
• a non-empty set A of input data,
• a non-empty set B of output data,
• a (single-step) state transition function next : Q×A → Q ,
• a (single-step) output function out : Q×A → B� , and
• an initial state q0 ∈ Q .

The types A and B determine the interface of the state transition machine.

Given a current state and an input, the single-step state transition function
determines a unique successor state. The single-step output function yields a
finite sequence of elements, not just a single element.

The single-step functions can naturally be extended to finite input streams.

Transforming Stream Processing Functions into State Transition Machines 5

Definition 3. The multi-step state transition function next� : Q → [A� → Q]
yields the state reached after processing a finite input stream:

next�(q)(〈〉) = q (4)
next�(q)(x � X) = next�(next(q, x))(X) (5)

The multi-step output function out� : Q → [A� → B�] accumulates the output
stream for a finite input stream:

out�(q)(〈〉) = 〈〉 (6)
out�(q)(x � X) = out(q, x)& out�(next(q, x))(X) (7)

The multi-step output function describes the (input/output) behaviour of the
state transition machine.

The multi-step state transition function cooperates with concatenation:

next�(q)(X&Y) = next�(next�(q)(X))(Y) (8)

Moreover, the multi-step output function is prefix monotonic as shown by the
following decomposition property:

out�(q)(X&Y) = out�(q)(X)& out�(next�(q)(X))(Y) (9)

Hence, for each state q ∈ Q , the multi-step output function out�(q) : A� → B�

constitutes a stream processing function. It abstracts from the individual state
transitions and offers a history-based view of the component.

3.2 Output Equivalence

We aim at transforming a state transition machine into a more compact one
with a reduced number of states without changing the input/output behaviour.
To this end, we are interested in states which induce an equal behaviour when
the state transition machine receives further input.

Definition 4. Two states p, q ∈ Q of a state transition machine M = (Q,A,B,
next , out , q0) are called output equivalent, denoted p ≈ q , iff they generate the
same output for all input streams:

out�(p) = out�(q) (10)

An observer of the state transition machine cannot distinguish output equivalent
states, as they produce the same output stream for every input stream.

Successor states of output equivalent states are also output equivalent:

p ≈ q =⇒ next�(p)(X) ≈ next�(q)(X) (11)

In [1] special properties of Mealy machines are investigated which ease the recog-
nition of output equivalent states.

6 W. Dosch and A. Stümpel

3.3 Related Models

State transition machines with input and output are closely related to other
state-based computing devices used to specify, verify, and analyse the behaviour
of distributed systems.

Most of the models describing the behaviour of components with input and
output originate in finite state machines distinguishing between machines of
Mealy type and machines of Moore type.

The widely used Mealy machines produce exactly one output datum with
each transition. Moreover, they operate on a finite set of states with finite input
and output alphabets.

Harel’s statecharts [13] are built upon Mealy machines. They allow a dis-
tributed system to be hierarchically decomposed into state machines where com-
munication is conducted via a broadcast mechanism. μ-Charts [22] are a deriva-
tive of statecharts which employ multicast communication and rectify some se-
mantic problems of statecharts. UML state diagrams [21,20] are based on state-
charts. The inputs are events, and outputs are actions; state diagrams also may
have final states.

A transition of a port input/output automaton [16] is labelled with either an
input, or an output or an internal action. Transitions may depend on a condition.
Moreover, in each state each input action is enabled. Consequently, there is no
direct connection between an input and the corresponding output. The input
stream is not processed step by step, and output can be arbitrarily delayed.

Stream X-machines [2] are automata with input and output which distinguish
between states and memory values.

State transition systems were used in [3] for specifying the behaviour of com-
ponents and in [5] for verifying safety and liveness properties. In order to ease
verification, these state transition systems carry as much information as possi-
ble: states are labelled with the previous and the future content of the channels
and additional attributes.

More recently, persistent Turing machines [12] formalized the intuitive notion
of sequential interactive computation endowing classical Turing machines with
a dynamic stream semantics.

In summary, there exist many similar state-based devices; nevertheless none
of them is identical to the type of state transition machines presented here. Our
state transition machines with input and output [9] are tailored for asynchronous
systems. They support a smooth transition from a component’s black-box view
based on communication histories to a glass-box view based on abstract state
transitions.

4 From Stream Processing Functions to State Transition
Machines

In this section, we implement stream processing functions by state transition
machines using history abstractions. Given a stream processing function, we

Transforming Stream Processing Functions into State Transition Machines 7

construct a state transition machine with the same interface and the same be-
haviour. The crucial design decision amounts to choosing an appropriate set of
states. In our approach, the states of the machine represent subsets of input
histories that have the same effect on the output for all future input streams.

4.1 History Abstractions

A history abstraction extracts from an input history certain information that
influences the component’s future behaviour.

Definition 5. For a stream processing function f : A� → B� and a set Q of
states, a function α : A� → Q is called a history abstraction for f , if it is
output compatible

α(X) = α(Y) =⇒ εf (X, x) = εf (Y, x) (12)

and transition closed:

α(X) = α(Y) =⇒ α(X � x) = α(Y � x) (13)

The output compatibility guarantees that a history abstraction identifies at most
those input histories which have the same effect on future output. The transition
closedness ensures that extensions of identified streams are identified as well:

α(X) = α(Y) =⇒ α(X&Z) = α(Y &Z) (14)

The transition closedness constitutes a general requirement, whereas the output
compatibility refers to the particular stream processing function.

4.2 Construction of the State Transition Machine

When implementing a stream processing function with a state transition ma-
chine, the history abstraction determines the state space, the transition func-
tions, and the initial state.

Definition 6. Given a stream processing function f : A� → B� and a surjective
history abstraction α : A� → Q for f , we construct a state transition machine
M [f, α] = (Q,A,B,next, out , q0) with the same interface as follows:

next(α(X), x) = α(X � x) (15)
out(α(X), x) = εf (X, x) (16)

q0 = α(〈〉) (17)

The state transition function and the output function are well-defined, since the
history abstraction is surjective, transition closed, and output compatible.

The following proposition establishes the correctness of the implementation
step.

8 W. Dosch and A. Stümpel

Theorem 1. Under the assumptions of Def. 6 , the stream processing function
and the multi-step output function of the state transition machine agree:

f(X) = f(〈〉) & out�(q0)(X) (18)

In particular, for a strict stream processing function we have

f = out�(q0) . (19)

In general, a stream processing function possesses various history abstractions
identifying different subsets of input histories as states.

The finest history abstraction is given by the identity function α(X) = X
keeping all input histories distinct. The associated state transition machine is
called the canonical state transition machine. Its states correspond to input
histories, the state transition function extends the input history input by input,
the output function is the output extension.

The coarsest history abstraction α(X) = [X]≈ maps every input history to
the class of output equivalent input histories. The associated state transition
machine possesses a minimal state space.

We can generalize the construction of the state transition machine to history
abstraction functions that are not surjective. In this case, the state transition
functions are uniquely specified only on the subset next�(q0)(A�) of reachable
states. The transition functions can be defined in an arbitrary way on the subset
of unreachable states; this will not influence the input/output behaviour of the
machine starting in the initial state.

4.3 State Refinement

Every stream processing function can be transformed into a state transition
machine with the same input/output behaviour using a history abstraction.

This universal construction lays the foundations for a formal method for
developing a correct state-based implementation of a communicating component
from its input/output-oriented specification. We call the formal method state
refinement, since it transforms a component’s communication-oriented black-
box description into a state-based glass-box description. The history abstraction
documents the essential design decisions for the state space. The state refinement
complements other methods of refinement for communicating components such
as interface refinement [4] , property refinement [6], and architecture refinement
[23] .

We presented the state refinement transformation f �→ M [f, α] for unary
stream processing functions f only. The transformation generalizes to stream
processing functions with several arguments in a natural way [25] .

5 History Independent Components

This section applies the state refinement transformation to the class of compo-
nents whose behaviour does not dependent on the previous input history. We

Transforming Stream Processing Functions into State Transition Machines 9

uniformly describe the set of history independent stream processing functions
by a higher-order function. A constant history abstraction leads to an associated
state transition machine with a singleton set as state space.

5.1 Iterator Components

An iterator component repeatedly applies a basic function to all elements of the
input stream, compare Fig. 2 .

map(g)� � 〈x1, x2, x3, . . .〉g(x1)& g(x2) & g(x3)& . . .

Fig. 2. Input/output behaviour of an iterator component

Iterator components are uniformly described by the higher-order function
map : [A → B�] → [A� → B�] with

map(g)(〈〉) = 〈〉 (20)
map(g)(x � X) = g(x)& map(g)(X) . (21)

The higher-order function map concatenates the sequences generated by the
single input elements to form the output stream. For every basic function g , the
function map(g) distributes over concatenation:

map(g)(X&Y) = map(g)(X)& map(g)(Y) (22)

Therefore the function map(g) is prefix monotonic. The output extension

εmap(g)(X, x) = g(x) (23)

depends only on the current input, but not on the previous input history.

5.2 State Transition Machine of an Iterator Component

The history abstraction of an iterator component need not preserve any infor-
mation of the previous input history. Thus any transition closed function forms
a proper history abstraction, in particular, any constant function.

For constructing the state transition machine M [map(g), const] , we choose
a singleton state space Q = {q0} and a constant history abstraction const(X) =
q0 . The resulting state transition machine is shown in Fig. 3 . The history inde-
pendent behaviour of an iterator component is reflected by a “state-free” machine
whose singleton state is irrelevant.

Vice versa, any state transition machine M = ({q0},A,B,next, out , q0) with
a singleton state implements the behaviour of an iterator component map(g)
where the basic function g : A → B� is defined as g(x) = out(q0, x) .

Iterator components are frequently used in various application areas, among
others in transmission components, processing units, and control components.

10 W. Dosch and A. Stümpel

M [map(g), const] = ({q0},A,B, next , out , q0)

next(q0, x) = q0

out(q0, x) = g(x)

Fig. 3. State transition machine of an iterator component

6 Scan Components

Many components such as counters accumulate their input with a dyadic oper-
ation, compare Fig. 4 .

scan(⊗,⊕)(e)� �〈x1, x2, x3, . . .〉(e ⊗ x1) & ((e ⊕ x1) ⊗ x2) & (((e ⊕ x1) ⊕ x2) ⊗ x3) & . . .

Fig. 4. Input/output behaviour of a scan component

The history abstraction for such components reduces the input stream with
this operation. In this section, we present the systematic state refinement of scan
components using the reduce function as a history abstraction.

6.1 Specification

We uniformly describe scan components by a higher-order function and explore
its algebraic properties.

The higher-order function

scan : [[C × A → B�] × [C × A → C]] → [C → [A� → B�]]

constructs its output stream by applying the outer combining operation ⊗ :
C × A → B� to the proper prefixes of its input stream reduced under the inner
combining operation ⊕ : C × A → C with an initial value e ∈ C :

scan(⊗,⊕)(e)(〈〉) = 〈〉 (24)
scan(⊗,⊕)(e)(x � X) = (e ⊗ x)& scan(⊗,⊕)(e ⊕ x)(X) (25)

6.2 History Abstraction

We can find a suitable history abstraction by exploring the decomposition prop-
erty of scan components. This property reveals the information to be abstracted
from the input history for specifying the future behaviour.

The result of the scan component for a composite input stream can be inferred
from the results of the two substreams:

scan(⊗,⊕)(e)(X&Y) = scan(⊗,⊕)(e)(X)& scan(⊗,⊕)(red(⊕)(e)(X))(Y) (26)

Transforming Stream Processing Functions into State Transition Machines 11

The auxiliary function red : [C × A → C] → [C → [A� → C]] reduces an input
stream under a dyadic operation ⊕ : C × A → C with initial value e ∈ C :

red(⊕)(e)(〈〉) = e (27)
red(⊕)(e)(x � X) = red(⊕)(e ⊕ x)(X) (28)

The reduce function is transition closed, since it validates the equation

red(⊕)(e)(X � x) = red(⊕)(e)(X) ⊕ x . (29)

The output extension of the scan component

εscan(⊗,⊕)(e)(X, x) = red(⊕)(e)(X) ⊗ x (30)

depends only on the reduced value of the input history; thus red(⊕)(e) is a
suitable history abstraction for scan(⊗,⊕)(e) .

6.3 State Transition Machine of a Scan Component

We construct the state transition machine for scan components in a schematic
way. We choose the set Q = C of states and the history abstraction red(⊕)(e) :
A� → C . We calculate the initial state

q0 = red(⊕)(e)(〈〉) = e . (31)

We derive the state transition function next : C × A → C for states that are
reductions of an input history with the initial value e :

next(red(⊕)(e)(X), x) = red(⊕)(e)(X � x) = red(⊕)(e)(X) ⊕ x (32)

The results of the state transition function on the set of unreachable states in C
can be chosen in an arbitrary way. We achieve a uniform description by setting
next(q, x) = q ⊕ x .

Similarly, we derive the single-step output function out : C × A → B� as

out(red(⊕)(e)(X), x) = εscan(⊗,⊕)(e)(X, x) = red(⊕)(e)(X) ⊗ x (33)

and extend it to all states by setting out(q, x) = q ⊗ x . The resulting state
transition machine is summarized in Fig. 5 .

Note that scan components comprise the general class of stream processing
functions [25] . Therefore the state transition machine for scan components pro-
vides a universal method for the iterative implementation of stream processing
functions.

M [scan(⊗,⊕)(e), red(⊕)(e)] = (C,A,B, next , out , e)

next(q, x) = q ⊕ x

out(q, x) = q ⊗ x

Fig. 5. State transition machine of a scan component

12 W. Dosch and A. Stümpel

7 Interactive Stack

As a final application we construct the implementation of an interactive stack
[7] . The application shows how to combine a control abstraction and a data
abstraction into an overall history abstraction.

7.1 Specification

An interactive stack is a communicating component that stores and retrieves
data following a last-in/first-out strategy. The component reacts on requests
outputting the last datum which has previously been stored, but was not re-
quested yet, compare Fig. 6 .

stack� �〈push(1), push(2), pop, push(3), pop, push(4), push(5), pop, pop, . . .〉〈2, 3, 5, 4, . . .〉

Fig. 6. Input/output behaviour of an interactive stack

We assume that the interactive stack is fault-sensitive. A pop command to
the empty stack causes a stack underflow: the component breaks and provides
no further output whatsoever future input arrives.

Let D denote the non-empty set of data to be stored in the stack. The
component’s input consists of pop commands or push commands along with the
datum to be stored:

I = {pop} ∪ push(D) (34)

The component’s behaviour forms a stream processing function stack : I� → D�

defined by the following equations (Push ∈ push(D)�) :

stack (Push) = 〈〉 (35)
stack(Push&〈push(d), pop〉&X) = d � stack(Push&X) (36)

stack(pop � X) = 〈〉 (37)

A sequence of push commands generates no output (35) . A pop command out-
puts the datum stored most recently (36) . After an erroneous pop command,
the interactive stack breaks (37) .

The behaviour of the interactive stack leads to the output extension εstack :
I� × I → D� defined by (Push ∈ push(D)�) :

εstack (X, push(d)) = 〈〉 (38)
εstack (Push � push(d), pop) = 〈d〉 (39)

εstack (〈〉, pop) = 〈〉 (40)
εstack(pop � X, pop) = 〈〉 (41)

εstack (Push&〈push(d), pop〉&X, pop) = εstack (Push&X, pop) (42)

Transforming Stream Processing Functions into State Transition Machines 13

A push command generates no output after any input history (38) . A pop com-
mand yields the datum stored most recently which was not requested yet (39)
unless the stack contains no datum (40) or there was a stack underflow (41) .

7.2 Control Abstraction

The future behaviour of a fault-sensitive stack is influenced by the occurrence
of an illegal pop command in the preceding input history.

We discriminate between regular and erroneous input histories using a binary
control state Control = {reg, err} . The control abstraction control : I� →
Control classifies input histories as regular or erroneous (Push ∈ push(D)�) :

control(Push) = reg (43)
control(Push&〈push(d), pop〉&X) = control(Push&X) (44)

control(pop � X) = err (45)

A sequence of push commands forms a regular input history (43), whereas a pop
command without a preceding push command gives rise to an erroneous input
history (45) .

The control abstraction is neither transition closed nor output compatible,
since it identifies all regular input histories, but forgets the data stored in the
component.

7.3 Data Abstraction

The future behaviour of the interactive stack will be influenced by the collection
of data stored in the component from the previous input history.

As a second abstraction, we explore the state Data = D� representing a stack
of data. The data abstraction data : I� → Data extracts from the input history
the stack of data retained in the component after processing the input stream
(n ≥ 0, Push ∈ push(D)�) :

data(〈push(d1), . . . , push(dn)〉) = 〈d1, . . . , dn〉 (46)
data(Push&〈push(d), pop〉&X) = data(Push&X) (47)

data(pop � X) = 〈〉 (48)

The data abstraction is neither output compatible nor transition closed. It iden-
tifies regular input histories leading to the empty stack with erroneous input
histories resulting in a broken stack.

7.4 History Abstraction

We integrate the control abstraction and the data abstraction into a joint history
abstraction.

This design decision leads to a composite state space Q = Control × Data
combining a control part and a data part. The abstraction function α : I� →
Control × Data pairs the control and the data abstraction (n ≥ 0, Push ∈
push(D)�) :

14 W. Dosch and A. Stümpel

α(〈push(d1), . . . , push(dn)〉) = (reg, 〈d1, . . . , dn〉) (49)
α(Push&〈push(d), pop〉&X) = α(Push&X) (50)

α(pop � X) = (err , 〈〉) (51)

The abstraction function keeps all required information from the input history
which determines the component’s future behaviour. The abstraction function
is indeed a history abstraction and supports the transition to a state-based
implementation.

7.5 State Transition Machine of an Interactive Stack

The implementation of the interactive stack is derived from the input/output
behaviour using the combined history abstraction for control and data states.
The resulting state transition machine is summarized in Fig. 7 . In a regular

M [stack , α] = (Control × Data, I,D, next , out , (reg , 〈〉))
next((reg , Q), push(d)) = (reg , Q � d) (7.1)
next((reg , Q � q), pop) = (reg , Q) (7.2)

next((reg , 〈〉), pop) = (err , 〈〉) (7.3)
next((err , 〈〉), x) = (err , 〈〉) (7.4)

out((reg , Q), push(d)) = 〈〉 (7.5)
out((reg , Q � q), pop) = 〈q〉 (7.6)

out((reg , 〈〉), pop) = 〈〉 (7.7)
out((err , 〈〉), x) = 〈〉 (7.8)

Fig. 7. State transition machine of an interactive stack

state, a push command attaches an element to the stack (7.1) and produces no
output (7.5) . Moreover, a pop command delivers the top of a non-empty stack
(7.6) ; for an empty stack it leads to the error state (7.3) . This state cannot be
left any more by further input (7.4) which produces no output in the error state
(7.8) .

The subset of states reachable from the initial state (reg, 〈〉) is isomorphic to
the direct sum of the data stack and an error state:

{reg} × D� ∪ {(err , 〈〉)} � D� + {err} (52)

The transition functions defined on the subset of reachable states can simply
be extended to the set of all states by setting next((err , Q), x) = (err , Q) and
out((err , Q), x) = 〈〉 .

7.6 State Transition Table of an Interactive Stack

For practical purposes, state transition machines are often described by state
transition tables displaying the different transition rules in a clear way.

Transforming Stream Processing Functions into State Transition Machines 15

Control Data Input Control’ Data’ Output

reg Q push(d) reg Q � d 〈〉
reg Q � q pop reg Q 〈q〉
reg 〈〉 pop err 〈〉 〈〉
err 〈〉 x err 〈〉 〈〉

Fig. 8. State transition table of an interactive stack

Fig. 8 describes the interactive stack by a state transition table. The four
transition rules relate current states and inputs to new states and outputs. The
transition rules tabulate the transition functions next and out . We use the no-
tational convention that the constituents of the successor state are designated
by a prime. For an empty input stream, the state transition table produces no
output which agrees with Equation (35) .

7.7 State Transition Diagram of an Interactive Stack

A state transition machine with input and output may be visualized by a state
transition diagram having the set of states as vertices. Each directed edge from
one state to a successor state is labelled by a corresponding pair naming input
and output:

q
(x,out(q,x))−−−−−−−→ next(q, x) (53)

In general, the graph will be infinite and can only be displayed in fragments or
in a symbolic way.

The state transition diagram of an interactive stack is infinite, but quite
regular. Fig. 9 shows an initial part of the state transition diagram for a binary
data type D = {0, 1} . Following Equation (52), we display states either by the
stack of data or the error state. The error state is a trap state which can only
be reached from the empty stack.

8 Conclusion

Nowadays interaction [26] is consider as an important paradigm. Therefore the
specification and the systematic design of interactive components belongs to
the central challenges of modern software technology. The software design must
safely bridge component descriptions on different levels of abstraction.

The component’s specification reflects a communication-oriented view con-
centrating on input and output histories. History-based specifications raise the
abstraction level of initial descriptions. The black-box view provides a functional
model of the component important for constructing networks in a compositional
way.

The component’s implementation decisively depends on the internal state
supporting an efficient realization of the transition functions. The glass-box view

16 W. Dosch and A. Stümpel

���

�
�

�
�err

�
(pop, 〈〉)

�

(x, 〈〉)

�
�

�
�〈〉

�����������

										

(push(0), 〈〉) (push(1), 〈〉)

� �

(pop, 〈0〉) (pop, 〈1〉)

�
�

�
�〈0〉

�
�

�
�〈1〉

�
�

�
�

�
��

�
�
�

�
�
���

�
�

�
�

�
��

�
�
�

�
�
���

(push(0), 〈〉)
(push(1), 〈〉) (push(0), 〈〉)

(push(1), 〈〉)

� � � �
(pop, 〈0〉) (pop, 〈1〉) (pop, 〈0〉) (pop, 〈1〉)

�
�

�
�〈0, 0〉

�
�

�
�〈0, 1〉

�
�

�
�〈1, 0〉

�
�

�
�〈1, 1〉

��� ��� ��� ��� ��� ��� ��� ���
...

...
...

...

Fig. 9. Initial part of the state transition diagram of an interactive stack of binary
values

discloses the component’s internal state which is in general composed from var-
ious control and data parts [11] .

This paper contributes to a better understanding how to relate communica-
tion-oriented and state-based descriptions. We presented a formal method for
transforming a stream processing function into a state transition machine. The
state refinement employs history abstractions to bridge the gap between input
histories and machine states. The transition functions can be derived from the
defining equations using the Lübeck Transformation System [8,17] .

Yet, the crucial design decision consists in discovering a suitable history ab-
straction which determines the state space. In general, the state of a component
must store at least the information which is needed to process further inputs in
a correct way. The particular information depends on the area of application.
For example, the state of a counter records the sum of all elements which passed
the component; so it depends on the entire prehistory. The state of a memory
cell remembers the datum of the last write command which is the only decisive
event in the prehistory. The state of a shift register stores a final segment of the
input stream that is withheld from the output stream. The state of a transmis-
sion component may record the active channel, the successful transmission or
the failure of acknowledge.

The state refinement presents a standard transformation from a denotational
to an operational description of interactive components. The refinement step

Transforming Stream Processing Functions into State Transition Machines 17

can be prepared by calculating the output extension of the stream processing
function. This step localizes the component’s reaction in response to a single
input wrt. a previous input history.

Among the candidates for an implementation, we identified the canonical
state transition machine whose state records the complete input history. State
transition machines with a reduced state space originate from the canonical ma-
chine by identifying states as input histories under history abstractions. By con-
struction, all resulting state transition machines correctly implement the speci-
fied behaviour.

The history-oriented and the state-based descriptions of software or hardware
components allow complementary insights. Both formalisms show advantages
and shortcomings with respect to compositionality, abstractness, verification,
synthesis, and tool support. In long term, proven design methods must flexibly
bridge the gap between functional behaviour and internal realization following
sound refinement rules.

References

1. I. Babcsányi and A. Nagy. Mealy-automata in which the output-equivalence is a
congruence. Acta Cybernetica, 11(3):121–126, 1994.

2. T. Bălănescu, A. J. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe, and
C. Vertan. Communicating stream X-machines systems are no more than X-
machines. Journal of Universal Computer Science, 5(9):494–507, 1999.

3. M. Breitling and J. Philipps. Diagrams for dataflow. In J. Grabowski and
S. Heymer, editors, Formale Beschreibungstechniken für verteilte Systeme, pages
101–110. Shaker Verlag, 2000.

4. M. Broy. (Inter-)action refinement: The easy way. In M. Broy, editor, Program
Design Calculi, volume 118 of NATO ASI Series F, pages 121–158. Springer, 1993.

5. M. Broy. From states to histories: Relating state and history views onto systems. In
T. Hoare, M. Broy, and R. Steinbrüggen, editors, Engineering Theories of Software
Construction, volume 180 of Series III: Computer and System Sciences, pages 149–
186. IOS Press, 2001.

6. M. Broy and K. Stølen. Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Monographs in Computer Science.
Springer, 2001.

7. W. Dosch. Designing an interactive stack. WSEAS Transactions on Systems,
1(2):296–302, Apr. 2002.

8. W. Dosch and S. Magnussen. The Lübeck Transformation System: A transforma-
tion system for equational higher order algebraic specifications. In M. Cerioli and
G. Reggio, editors, Recent Trends in Algebraic Development Techniques (WADT
2001), number 2267 in Lecture Notes in Computer Science, pages 85–108. Springer,
2002.

9. W. Dosch and A. Stümpel. From stream transformers to state transition machines
with input and output. In N. Ishii, T. Mizuno, and R. Lee, editors, Proceedings of
the 2nd International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD’01), pages 231–238. Inter-
national Association for Computer and Information Science (ACIS), 2001.

18 W. Dosch and A. Stümpel

10. W. Dosch and A. Stümpel. History abstractions of a sequential memory com-
ponent. In B. Gupta, editor, Proceedings of the 19th International Conference
on Computers and their Applications (CATA-2004), pages 241–247. International
Society for Computers and their Applications (ISCA), 2004.

11. W. Dosch and A. Stümpel. Introducing control states into communication based
specifications of interactive components. In H. Arabnia and H. Reza, editors,
Proceedings of the International Conference on Software Engineering Research and
Practice (SERP’04), volume II, pages 875–881. CSREA Press, 2004.

12. D. Q. Goldin, S. A. Smolka, P. C. Attie, and E. L. Sonderegger. Turing machines,
transition systems, and interaction. Information and Computation, 194(2):101–128,
Nov. 2004.

13. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8:231–274, 1987.

14. G. Kahn. The semantics of a simple language for parallel programming. In J. Rosen-
feld, editor, Information Processing 74, pages 471–475. North–Holland, 1974.

15. G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In
B. Gilchrist, editor, InformationProcessing 77, pages 993–998. North–Holland, 1977.

16. N. A. Lynch and E. W. Stark. A proof of the Kahn principle for input/output
automata. Information and Computation, 82:81–92, 1989.

17. S. J. Magnussen. Mechanizing the Transformation of Higher-Order Algebraic Spec-
ifications for the Development of Software Systems. Logos Verlag Berlin, 2003.

18. B. Möller. Ideal stream algebra. In B. Möller and J. Tucker, editors, Prospects for
Hardware Foundations, number 1546 in Lecture Notes in Computer Science, pages
69–116. Springer, 1998.

19. L. Motus, M. Meriste, and W. Dosch. Time-awareness and proactivity in models
of interactive computation. ETAPS-Workshop on the Foundations of Interactive
Computation (FInCo 2005). Electronic Notes in Theoretical Computer Science,
2005. (to appear).

20. Object Management Group (OMG). OMG Unified Modeling Language Specifica-
tion, 3. UML Notation Guide, Part 9: Statechart Diagrams, Mar. 2003.

21. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley Object Technology Series. Addison-Wesley, 1998.

22. P. Scholz. Design of reactive systems and their distributed implementation with
statecharts. PhD Thesis, TUM-I9821, Technische Universität München, Aug. 1998.

23. G. Ştefănescu. Network Algebra. Discrete Mathematics and Theoretical Computer
Science. Springer, 2000.

24. R. Stephens. A survey of stream processing. Acta Informatica, 34(7):491–541, 1997.
25. A. Stümpel. Stream Based Design of Distributed Systems through Refinement.

Logos Verlag Berlin, 2003.
26. P. Wegner. Why interaction is more powerful than algorithms. Communications

of the ACM, 40(5):80–91, May 1997.
27. G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gabbay,

and T. Maibaum, editors, Semantic Modelling, volume 4 of Handbook of Logic in
Computer Science, pages 1–148. Oxford University Press, 1995.

NuEditor - A Tool Suite for Specification and
Verification of NuSCR

Jaemyung Cho, Junbeom Yoo, and Sungdeok Cha

Department of Electrical Engineering and Computer Science,
Korea Advanced Institute of Science and Technology (KAIST),
373-1, Guseong-dong, Yuseong-gu, Daejon, Republic of Korea
{jmcho, jbyoo, cha}@dependable.kaist.ac.kr

Abstract. NuEditor is a tool suite supporting specification and verification of
software requirements written in NuSCR. NuSCR extends SCR (Software Cost
Reduction) notation that has been used in specifying requirements for embed-
ded safety-critical systems such as a shutdown system for nuclear power plant.
SCR almost exclusively depended on fine-grained tabular notations to represent
not only computation-intensive functions but also time- or state-dependent opera-
tions. As a consequence, requirements became excessively complex and difficult
to understand. NuSCR supports intuitive and concise notations. For example, au-
tomata is used to capture time or state-dependent operations, and concise tabular
notations are made possible by allowing complex but proven-correct equations
be used without having to decompose them into a sequence of primitive opera-
tions. NuEditor provides graphical editing environment and supports static anal-
ysis to detect errors such as missing or conflicting requirements. To provide high-
assurance safety analysis, NuEditor can automatically translate NuSCR specifica-
tion into SMV input so that satisfaction of certain properties can be automatically
determined based on exhaustive examination of all possible behavior. NuEditor
has been programmed to generate requirements as an XML document so that
other verification tools such as PVS can also be used if needed. We have used
NuEditor to specify a trip logic of RPS(Reactor Protection System) BP(Bistable
Processor) and verify its correctness. It is a part of software-implemented nuclear
power plant shutdown system. Domain experts found NuSCR and NuEditor to be
useful and qualified for industrial use in nuclear engineering.

1 Introduction

Many validation and verification techniques (e.g. inspection, fault tree analysis, simula-
tion, model checking, etc) have been proposed to ensure safety. In nuclear power plant
control systems, software safety became a critical issue as traditional RLL (Relay Lad-
der Logic)-based analog systems are replaced by digital controllers [1]. KNICS project
[2] in Korea is developing DPPS (Digital Plant Protection System) RPS (Reactor Pro-
tection System) which is classified as being safety-critical by government regulation
authority. To maximize safety of RPS software, proven-effective formal methods are
being used. For example, SCR-style notation was previously used to specify software
requirements for Wolnsung SDS2, a shutdown system currently in service at a different
plant in Korea.

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 19–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

20 J. Cho, J. Yoo, and S. Cha

Experts who performed critical analysis on SCR and other formal specification lan-
guages came to the conclusion that SCR-like notation is well-suited for specifying and
verifying requirements for RPS but that the notation in its current form is too verbose to
be effectively used. Furthermore, availability of SCR* toolset was unsatisfactory from
the viewpoint of KNICS project management office. Therefore, an effort was initiated to
(1) customize SCR so that characteristics unique to nuclear engineering domain are best
reflected in the design of a specification language; and (2) develop a tool suite, NuEditor,
to integrate graphical editing capability and formal verification environment. In addition
to performing built-in completeness and consistency analysis on NuSCR specification,
NuEditor can generate SMV [3] input program automatically so that one can perform
model checking with minimal intervention. It also generates XML output that is used as
input to PVS for deductive verification of structural and functional properties [4].

To find out if NuSCR and NuEditor are useful enough to nuclear engineers, we
conducted a joint study with a group of domain experts in which trip logic of RPS BP
(Bistable Processor) was specified and verified. This paper introduces key features of
NuEditor and reports our experience from the case study. Section 2 briefly introduces
NuSCR, and section 3 provides an overview of NuEditor features. After reporting our
experience with NuEditor from the case study in section 4, we conclude the paper and
discuss planned extensions to NuEditor.

2 NuSCR

NuSCR [5] is a formal requirement specification language designed for nuclear domain.
It was developed with active participation of and consultation by nuclear engineers who
are familiar with software engineering knowledge in general and formal methods in
particular. It uses three kinds of variables to capture the behavior of software system
efficiently. Readability of the specification to domain experts was a key concern when
deciding which notation to use to capture various aspects of requirements.

The software system is specified within a function overview diagram (FOD) in a
notation similar to data flow diagrams. An FOD illustrates hierarchical organization
of variable nodes. A node has its inputs and outputs, and nodes are connected in an
acyclic graph. A node is specified by structured decision table (SDT), finite state ma-
chine (FSM), and timed transition system (TTS) by the variable categorization for func-
tion variable node, history variable node, and timed history variable node, respectively.
These three representations are used for specifying different characteristics of behaviors
of nodes. A function variable node specifies mathematical function in a table represen-
tation called an SDT. A history variable node specifies variable’s states and transition
relationships between the states in an FSM. A timed history variable node specifies an
FSM with timing constraints in a TTS.

We extracted an example system from APR-1400 RPS which is currently being
developed by KNICS consortium. This example is based the prototype version of the
system, and we did not have access to later versions. 〈Fig.1 (a)〉 shows an FOD for
the fixed set-point rising trip logic1, which is the basic reactor shutdown logic. The

1 It denotes the logic named g Fixed Set Point Rising Trip With OB, a part of bistable pro-
cess(BP). We simplified the variable names to facilitate understanding.

NuEditor - A Tool Suite for Specification and Verification of NuSCR 21

f_X

f_Module_Error

f_Channel_Error

f_X_OB_Ini

f_X_Vali
d
1

th_X_Pretrip
4

th_X_Pretrip

th_X_Trip
5

th_X_Trip

f_X_OB_
Perm

2

h_X_OB_Sta
3 h_X_OB_Sta

f_X_OB_Perm

Cond_a : f_X >= k_X_Trip_Setpoint
Cond_b : [k_Trip_Delay, k_Trip_Delay] (f_X >= k_X_Trip_Setpoint and h_X_OB_Sta = 0)
Cond_c : f_X < k_X_Trip_Setpoint - k_X_Trip_Hys
Cond_d : f_X_Valid = 1 or f_Module_Error = 1 or f_Channel_Error = 1)

Waiting Normal

Cond_a
and not cond_d

not cond_a
and not cond_d

Trip_By
_Logic

Cond_c and not
Cond_d
/ th_X_Trip := 1

Cond_d
/ th_X_Trip := 0

Cond_b and not Cond_d
/ th_X_Trip := 0

Cond_d
/ th_X_Trip := 0

not Cond_d
/ th_X_Trip := 1

Trip_By
_Error

Cond_d
/ th_X_Trip := 0

(a) Function Overview Diagram

(b) Timed History Variable Node
defined by TTS

No_OB
_State

OB_Stat
e

f_X_OB_Perm = 1 and
f_X_OB_Ini = 1 /

h_X_OB_STA := 1

f_X_OB_Perm = 0
/ h_X_OB_STA := 0

(c) History Variable Node defined by
FSM

(d) Function Variable Node
defined as SDT

: Input or output node

: function node

: history node

: timed-history node

: data flow

< legend >

Fig. 1. NuSCR specification for a part of APR-1400 RPS BP

rectangles are inputs and outputs of the node, and it is composed of three types of nodes
and their data-flow relationships.

〈Fig.1 (b)〉 represents the timed history variable node names th X Trip defined in
TTS. The behavior is followings. Condition f X = k X Trip Setpoint with a previous
state Normal make the TTS entering Waiting state. And then, the system produces out-
put th X Trip = 1 (not to generate a trip signal) during it stays Waiting states. If time
duration k Trip Delay elapsed with satisfying condition (f X >= k X Trip Setpoint and
h X OB Sta=0) (satisfying Cond b and Waiting state), the system moves to
Trip By Logic state and produces th X Trip=0 (generate a trip signal). Other parts can
be interpreted in the similar way. 〈Fig.1 (c)〉 is an FSM definition for the history variable
node named h X OB Sta. The behavior of an FSM is similar to TTS without consider-
ing timing constraints. An SDT in 〈Fig.1 (d)〉 shows the definition of function variable
node named f X Valid. The behavior of f X Valid is as follows: If the value of f X Valid
is between k X MIN and k X MAX, output f X Valid is 0. Otherwise, the output is 1.

22 J. Cho, J. Yoo, and S. Cha

NuSCR supports designers three different kinds of variables to express various as-
pects of requirements according to their unique characteristics. NuSCR has been eval-
uated as being easy to specify and understand by domain engineers [6].

3 NuEditor Features and Capabilities

Main functionalities of NuEditor are shown in 〈Fig.2〉. NuEditor, developed in Java,
is platform independent. All constructs in NuSCR (e.g., FOD, SDT, FSM, and TTS)
can be graphically edited using NuEditor. Various nodes are colored differently so that
they roles are visually apparent. NuEditor stores models in hierarchically organized
folders, as shown on the left side of the tool window, so that requirements for large and
complex industrial systems can be conveniently organized. Users can add annotations
and comments as needed.

In addition to a specification editor, consistency and completeness checker was in-
cluded. 〈Fig.3 (a)〉 shows FOD and FSM editing windows, and 〈Fig.3 (b)〉 shows SDT
window and XML generator window. As shown in 〈Fig.4〉, analysis on structural cor-
rectness is automated. That is, when a group node is expanded in a separate page, inputs
and outputs declared at a higher-level node are shown. If detailed specification of inputs
and outputs on that page neglects to use them all, error message pops up to warn users
that usage of variables is inconsistent. Variables can also be dragged so that users need
not explicitly type variable names repeatedly.

To support formal verification, NuEditor includes a XML (Extensible Markup Lan-
guage) generator and a SMV input generator. The XML generator is used to prove the
structural and functional properties of NuSCR specification using PVS [7]. Theorem
proving is a deductive verification method. While powerful, proof sessions are often
lengthy and tedious in practice. Fortunately, modern theorem provers like PVS provide
excellent support in proof automation and development of proof strategies. To best uti-
lize capabilities of tools like PVS, NuEditor generates XML documents which can then
be used as input to other applications. XML documents, for example, can be used in
developing design specification written in FBD(Function Block Diagram) notations [8]
as is the case in the KNICS project [2].

Fig. 2. Functionalities of NuEditor

NuEditor - A Tool Suite for Specification and Verification of NuSCR 23

Fig. 3. Screen shots of NuEditor

Fig. 4. Completeness and Consistency Checking functions in NuEditor

The SMV input generator is used to check if specification satisfies certain proper-
ties written in temporal logic. Model checking [9] is a technique enabling “push-button”
verification based on exhaustive search of possible behavior. Model checking is becom-
ing popular in industry because (1) it is automated; and (2) a counterexample is gener-
ated if the property does not hold in the specification. Counterexample can reveal the

24 J. Cho, J. Yoo, and S. Cha

presence of subtle flaws in the specification or can be used to automatically construct
test cases. SMV is arguable the most widely used model checker to date, and NuEditor
can automatically generate input to SMV model checker. User simply needs to execute
SMV software (e.g., Cardence SMV), load the specification file and property file, and
select verify all menus in the option.

4 Case Study

KNICS RPS includes RPS, ESF-CCS (Engineering Safety Features - Component Con-
trol System), and ATIP (Automatic test and Interface Processor) as major components.
RPS is designed to protect the reactor, while ESF-CCS is intended to reduce the influ-
ence of other accidents including loss of coolant. ATIP tests RPS and ESF-CCS auto-
matically. In this section, we present how NuEditor was used in specifying requirements
for BP (Bistable Logic) logic. We performed model checking of BP specification. RPS
BP periodically accepts inputs from 18 different safety sensors installed in the system
and performs necessary comparison against predefined trip logics and threshold values.

Fig. 5. FODs for g BP in KNICS RPS

For example, 〈Fig.5〉 is a part of NuSCR specification for RPS BP. In 〈Fig.5 (a)〉,
g BP, a group node, is decomposed as shown in 〈Fig.5 (b)〉. NuSCR software require-
ments specification for KNICS BP is about 400 pages, and it took 5 months by a num-
ber of domain experts. We present the results of model checking fixed set-point rising
trip logic with operating bypass. The logic description written in natural language took
about four pages. Translation rules used in NuEditor are similar to those proposed in
[10,11,12,13]. [10] translates SCR specification into SMV input language, whereas [11]
translates SCR specification into language accepted by SPIN [12]. Since NuSCR, due
to inclusion of FSM and TTS in its notation, is more analogous to RSML than SCR, our
rule were mainly based on translation rules for RSML [13]. More detailed translation
methods are described in [14].

NuEditor - A Tool Suite for Specification and Verification of NuSCR 25

Fig. 6. Generated SMV input program from th X Trip in Fig.1 (b)

〈Fig.6〉 shows SMV input program for th X Trip shown earlier in 〈Fig.?? (b)〉. Since
variables in SMV must have finite discrete values, user must abstract infinite values (e.g.
f X at line 8) as integer although f X actually returns a real number as its result. Con-
stants defined in the systems (lines 42 through 44) are separately managed by NuEdi-
tor. Lines 35 through 39 and 51 reflect TTS specification including timer variables, i.e.
time 1 is a clock variable in TTS and line 51 is an action triggered by the variable.

The following properties were verified using SMV:

1. System is free from deadlock.
2. Conflicting transitions are never enabled simultaneously.
3. If module error, channel error, or input value error occur, trip signal is generated

immediately.
4. Trip signal is generated if the processing value rises above the predefined set-point,

and the condition lasts for some predefined time.
5. If trip conditions aren’t satisfied, then trip signal shall never be fired.
6. Trip signal is never fired during operating bypass.

Properties, written in CTL formula, are as follows. It must be noted that there are
no automated support built in NuEditor in specifying properties. Users are expected to
be familiar with basics of temporal logic and its operators.

〈Fig.7〉 shows how SMV-based model checking results look like. Results marked
TRUE indicate that the property is satisfied in all possible system spaces. In this case
study, all properties are proved to be true using SMV model checker, so we can confirm
that RPS model satisfies properties (1) through (6).

26 J. Cho, J. Yoo, and S. Cha

1. Deadlock-freeness
SPEC AGEX 1

2. Non-determinism
SPEC AG ! (FROM-WAITING-TO-TRIP BY LOGIC-taken & FROM-
WAITING-TO-NORMAL-taken)
SPEC AG ! (FROM-WAITING-TO-TRIP BY LOGIC-taken & FROM-
WAITING-TO-TRIP BY ERROR-taken)
SPEC AG ! (FROM-WAITING-TO-NORMAL-taken & FROM-WAITING-TO-
TRIP BY ERROR-taken)
SPEC AG ! (FROM-WAITING-TO-NORMAL-taken & FROM-WAITING-TO-
TRIP BY ERROR-taken)
SPEC AG ! (FROM-TRIP BY LOGIC-TO-TRIP BY ERROR-taken & FROM-
TRIP BY LOGIC-TO-NORMAL-taken)
SPEC AG ! (FROM-NORMAL-TO-TRIP BY ERROR-taken & FROM-
NORMAL-TO-WAITING-taken)

3. Trip occurred by error
SPEC AG ((f Channel Error = 1 | f Module Error = 1) −→ AF th X Trip = 0)

4. Trip occurred by logic
SPEC AG(((f X > k X Trip Setpoint) & (time 1 > 4)) −→ AF th X Trip = 0)

5. Normal status
SPEC AG ((!(f Channel Error = 1 | f Module Error = 1 | f X Valid = 1) & (f X
<= k X Trip Setpoint)) −→ AF th X trip = 1)

6. Trip in operating bypass
SPEC AG((h X OB Sta = 1 & ! (f Channel Error = 1 | f Module Error = 1 |
f X Valid = 1) & AF AX th X Trip = 1) −→ AF AX th X Trip = 1)

Fig. 7. Verification result of th XTrip

NuEditor - A Tool Suite for Specification and Verification of NuSCR 27

5 Conclusion and Future Work

In this paper, we presented key features of NuEditor, an integrated tool suite to perform
both specification and verification of requirements specification written in NuSCR. The
NuEditor includes a graphical editor, consistency and completeness checker, XML out-
put generator, and SMV input generator. NuEditor provides graphical and user-friendly
interface and relieves engineers from tedious and uninteresting work. It allows them to
work on more creative tasks. Automated consistency checks save considerable time of
developers and reviewers. It also increases confidence that specification is correct by
allowing engineers to enjoy benefit of formal methods. NuEditor tool was well liked by
nuclear engineers, and addition of simulation and backward analysis capabilities would
further improve its usefulness in real applications like KNICS.

Acknowledgements. This research was partially supported by Advanced Information
Technology Research Center(AITrc), Software Process Improvement Center(SPIC),
and Internet Intrusion Response Technology Research Center(IIRTRC) in Korea.

References

1. NRC, U.: Digital Instrumentation and Control Systems in Nuclear Power Plants: safety and
reliability issues. National Academy Press (1997)

2. KNICS: Korea nuclear instrumentation and control system research and development center.
(http://www.knics.re.kr/english/eindex.html)

3. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
4. Kim, T., Cha, S.: Automated structural analysis of scr-style software requirements specifica-

tions using pvs. Journal of Software Testing, Verification, and Reliability 11 (2001) 143–163
5. Yoo, J., Kim, T., Cha, S., Lee, J.S., Son, H.S.: A formal software requirements specification

method for digital nuclear plants protection systems. Journal of Systems and Software 74
(2005) 73–833

6. Yoo, J., Cha, S., Oh, Y., Kim, C.: Formal software requirements specification for digital
reactor protection systems. Journal of Korea Information and Science Society 31 (2004)
750–759

7. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining specification,
proof checking, and model checking. In: Proceedings of the Eighth International Conference
on Computer Aided Verification CAV. Volume 1102., New Brunswick, NJ, USA, Springer
Verlag (1996) 411–414

8. Commission), I.E.: International standard for programmable controllers: Programming lan-
guages (1993) part 3.

9. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Programming Languages and Sy-
sems 8 (1986) 244–263

10. Atlee, J.M., Buckley, M.A.: A logic-model semantics for scr software requirements. In:
International Symposium on Software Testing and Analysis. (1996) 280–292

11. Ramesh, B., Heitmeyer, C.L.: Model checking complete requirements specifications using
abstraction. Automated Software Engineering 6 (1999) 37–68

28 J. Cho, J. Yoo, and S. Cha

12. Holzmann, G.J., Godefroid, P., Pirottin, D.: Coverage preserving reduction strategies for
reachabily analysis. In: IFIP/WG6.1 Symposium, Protocol Specification, Testing, and Veri-
fication(PSTV92). (1992) 349–364

13. Chan, W., Anderson, R.J., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese, J.D.: check-
ing large software specification. Transaction on Software Engineering 24 (1998) 498–520

14. Cho, J.: Nueditor : An environment for nuscr specification and verification. Master’s thesis,
Korea Advanced Institute of Science and Technology (KAIST) (2002)

Representing NFRs and FRs: A Goal-Oriented

and Use Case Driven Approach

Lawrence Chung1 and Sam Supakkul2

1 The University of Texas at Dallas, Richardson, Texas, USA
chung@utdallas.edu

2 Titat Software LLC, Euless, Texas, USA
ssupakkul@ieee.org

Abstract. As software systems become more complex and important for
business and everyday life, the need to better address non-functional re-
quirements (NFRs) become increasing more crucial. However, UML and
particularly the use case modeling–the current de facto standard method
for functional requirements elicitation and modeling–lacks equally ma-
tured modeling constructs for dealing with NFRs. This paper proposes
a framework for representing and integrating NFRs with FRs in the
use case model at four association points: subject (system boundary),
actor, use case, and communicate association. The NFRs can be implic-
itly associated with other related use case model elements based on the
NFR propagation rules proposed to eliminate the need for redundant
NFR specifications. A process is presented to demonstrate how to apply
this framework, along with an illustration based on a simplified pricing
system.

1 Introduction

As software systems become more complex and important for business and every-
day life, the need to better address non-functional requirements (NFRs) become
increasing more crucial. However, UML [1], particularly the use case modeling–
the current de facto standard method for functional requirements elicitation and
modeling, lacks equally matured modeling constructs for dealing with NFRs. In
use case driven development, NFRs–if addressed at all–are described informally
in the Special Requirements section of the use case description. This is intended to
provide context for the NFRs, but this approach has several drawbacks: 1) non-
intuitive reference points for some NFRs such as maintainability or portability,
2) NFRs not represented and organized due to the lack of modeling constructs,
3) NFRs not traceable to other software artifacts, and 4) redundant and error
prone when NFRs textual description is duplicated in many use cases that share
the same NFRs.

In this paper, we propose a goal-oriented and use case driven framework to
address the problems we described above. Instead of using only use case as the
context for all types of NFRs, we propose to associate NFRs at four use case
model elements to provide more precise context. These NFR association points

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 29–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

30 L. Chung and S. Supakkul

include system boundary, actor, use case, and communicate association. To prop-
erly represent NFRs, we adopt the NFR Framework [2] to represent NFRs as
softgoals to be satisficed. To eliminate the need for redundant specification for
common NFRs, we propose NFR propagation rules where equal or more strict
form NFRs are propagated to applicable use case elements.

A number of proposals have been proposed to integrate NFRs in the use
case model. The Language Extended Lexicon (LEL) driven approach [3] first
describes the application domain in LEL to provide context for both FRs and
NFRs, which are analyzed separately and then integrated in the use case model.
NFRs are analyzed visually using the NFR Framework [2], whose functional
solutions (operationalation) are represented by new use cases included by the use
cases created for FRs. This approach is of close relevance to our work. The main
differences between the two approaches are 1) the use of LEL in this approach 2)
this approach integrates NFR operationalizations in the use case model while our
approach integrates the NFRs themselves. The cross-cutting quality attributes
approach [4] adopts the NFR Framework to textually analyze NFRs for “cross-
cutting” relevance to one or more use cases. The NFRs are then represented by
unnamed use cases with stereotype indicating the type of NFR. These use cases
are included by the use cases found relevant during the analysis process. The
goal-driven approach [5] identifies initial set of use cases based on functional
goals. Additional use cases are created to represent non-functional goals and
extend the related FR use cases. The performance engineering [6] annotates
quantitative performance constraints to UML diagrams such as communicate
associations in the use case model, messages in the sequence diagram, or states
in the state machine diagram.

The content of this paper is organized as follows. Section 2 provides a brief
overview of the UML use case model and the NFR Framework, the underlying
frameworks for our approach. In Sec. 3, we describe the proposed framework in
detail to elaborate how to identify NFRs at four reference points in the use case
model and how their effect can be automatically propagated to other part of the
use case model. Section 4 presents a process for using this framework with an
example illustrating how to apply this framework to a simplified pricing system.
Sec. 5 briefly describes case-study and feedback based on using the framework
in two industrial projects. We then conclude the paper in Sec. 6 with a summary
of the contributions and future directions.

2 A Review of the Underlying Frameworks

This section provides a brief review of two underlying frameworks for our ap-
proach: UML use case modeling and the NFR framework.

2.1 UML Use Case Modeling

UML use case modeling is the current de facto standard modeling technique for
capturing functional requirements (FRs) [1]. Use case diagram, like the one in

Representing NFRs and FRs 31

Fig. 1, is used to depict actors, use cases, and relationships among them. An
actor, denoted by a stick man icon, represents a role played by one or more
external entities, which can be human or machine. A use case, denoted by an
ellipse, represents a way to use the system that produces an observable result to
an actor. Every use case must be invoked either by a stimuli from an actor or
automatically invoked by the system through include and extend relationships.
The actors that invoke use cases are active actors, whereas the actors that are
passive and stimulated by the system to fulfill certain needs are passive actors.
The relationship that represents the communication between the actor and the
use case is called communicate association. It is denoted by a directed line with
an arrow indicating the direction of the stimuli either from actor to use case
in the case of active actor, or use case to actor in the case of passive actor.
The system in question is denoted by a rectangular enclosing the use cases to
delineate the boundary between external entities and what functionality to be
provided by the system.

Use cases can be organized using include, extend, and generalization/ spe-
cialization relationships. When the model shows use case A and B include use
case C, it means that functionality represented by C is common and is included
as part of A and B. Use case A extends use case B means that functionality
represented by A is optional and can be included as part of B ; however, only
when a predefined condition for an extension point in use case B is met. Gen-
eralization/specialization is used to categorize similar actors or use cases the
same way that classes may be organized in UML class diagram. Figure 1 is a
use case diagram that shows system functionality of a simplified pricing system.
The pricing system allowed the airlines to collaborate with its suppliers over
the Internet to manage prices of in-flight service items such as meals, drinks,
supplies, and cleaning activities provided by suppliers.

2.2 The NFR Framework

The NFR Framework is a goal-oriented approach for addressing NFRs [7][2].
In this framework, NFRs are represented as softgoals to be satisficed. Softgoals
are considered satisficed when there is sufficient positive and little negative evi-
dence for the claim. To determine satisficeability, operationalizing softgoals rep-
resenting design decisions for achieving the NFR softgoals are identified and
analyzed. Contribution are evaluated and trade-offs are made possibly with ra-
tionale recorded. The entire process is recorded in a Softgoal Interdependency
Graph (SIG). The selected design decisions are then used as the basis for ar-
chitecture and design. Figure 2 shows an SIG of serviceability softgoal for the
pricing system described in Sec. 2.1. The light clouds represent NFR softgoals,
denoted by nomenclature Type[Topic] where Type is a non-functional aspect
(e.g. serviceability, performance) and Topic is the context for the non-functional
aspect (e.g. Pricing System).

NFR softgoals may be refined, typically either by Type or Topic at a time,
using either AND-decomposition (denoted by a single arc) or OR-decomposition
(denoted by a double arc). For example, Serviceability[Pricing System] is

32 L. Chung and S. Supakkul

Bill of Material System
Update Bill of Material

Pricing System

Service Item Planner Manage Service Items

Supplier

Send RFP

extends

Submit Price Proposal

Procurement Manager Approve Price Proposal

Actor

Use Case

Legend

Communicate
Association

System
boundary

Fig. 1. Use Case Diagram of a Simplified Pricing System

AND-decomposed on the Type to Installation[Pricing System] and Tech
Support[Pricing System]. The dark clouds represent operationalizing soft-
goals. The lines from dark clouds to light clouds indicate the degree the op-
erationalizing softgoal contribute to satisficing the NFR softgoals. The degree of
the contribution is indicated as highly positive (denoted by ++ symbol), some-
what positive (denoted by + symbol), highly negative (denoted by -- symbol),
or somewhat negative (denoted by - symbol). Rationale for any node or link in
the SIG contribution are recorded with a dotted cloud called claim softgoal.

3 The Goal-Oriented and Use Case Driven Analysis and
Design Framework

This section describes how to represent NFRs as softgoals in the use case model.
It also presents NFR propagation rules that define how the effect of NFRs can
be propagated to other parts of the use case model.

3.1 NFR Association Points

We propose four NFR association points in the use case model including actor,
use case, actor-usecase-communication, and subject.

Actor. NFRs can be associated with active actors to describe the characteris-
tics of the actor. For example, to represent scalability of a web-baled application

Representing NFRs and FRs 33

Web browser

+

Serviceability
[Pricing System]

Generic universal
display platform

Serviceability
[Client
components]

Custom client
application

-

!

!

Installation
Tech
support

X

+-

User Friendliness
[User Interface]

+

Time consuming and
cost ineffective to
distribute and install fat
client

Serviceability
[Server
components]

non-functional softgoal

operationalizing softgoal

claim softgoal

AND-decomposition

OR-decomposition

Legend

X

satisficed softgoal

denied softgoal

positive contribution
negative contribution

+

+

Fig. 2. A Softgoal Interdependency Graph (SIG) for a Serviceability NFR

supporting large number of users, we would associate scalability NFR softgoal
with the Customer actor. The actor associated NFR softgoal would then con-
strain parts of the system that realize all use cases and communication related
to this actor. On the other hand, if we associate the NFR with a passive actor, it
would place the constraint on the external entity instead. For example, associat-
ing a scalability NFR to external Payment Clearing System actor would require
the organization responsible for the system to provide a clearing system that
meets the NFR. We could also describe characteristics of the actor with NFRs
such as the actor must be a certified network engineer if domain knowledge is

Active Actor
Use Case

characteristics of or
constraint placed by

the actor

access,
communication, or

info exchange
related NFRs

function related
NFRs

System Boundaryglobal NFRs, or
system related

NFRs

Passive Actor

characteristics of or
constraint placed on

the actor

Fig. 3. NFR Association Points and Their Semantics in the Use Case Model

34 L. Chung and S. Supakkul

critical to operating a network management system. This provides information
for the organization to plan or train the users accordingly.

Use Case. Since use case represents system functionality, it is an ideal reference
point for associating function related NFRs such as performance or accuracy. For
example, associating fast response time NFR to Withdraw Fund use case of an
Automated Teller Machine (ATM) system would provide a precise context for
the designer to pay more attention to the performance aspect of the architecture
and software design that realize this particular use case and prevent over design
for other use cases.

Communicate Association. Communicate association serves as an associ-
ation point for NFRs that are related to communication, access, information
exchanged with the actor, user interface, or application programming interface
(API) with external systems. For example, by associating security NFR to the
communicate association between Customer actor and Withdraw Fund use case,
it precisely suggests that the constraint be placed on the architecture and soft-
ware design that realize the interface to access this use case, but not others.

System Boundary. System boundary serves as an association point for NFRs
that are global in nature such as environmental, business process, or software
process related NFRs that may be less meaningful to be associated with other
association points. Examples of this type of NFRs are cost, maintainability,
serviceability, portability, and extendability.

3.2 NFR Propagation

We propose NFR propagation rules in this section so common NFRs that are
applicable to multiple use case model elements need to be defined and asso-
ciated with a use case model element only once. They are then automatically
propagated to other related parts of the use case model. This eliminates the re-
dundancy in the requirements model and encourages modular and encapsulation
in the design. The rules are specific to different association points as follows.

Actor. When an NFR is associated with an actor, a more or equally strict
form of NFRs should be considered for the actors that directly and indirectly
specialize the original actor. Fig. 4.a and 4.b show a conceptual and a concrete
examples of this NFR propagation. In the diagrams, solid clouds are NFRs that
are explicitly associated with the actors, while dotted clouds are the propagated
NFRs using this rule. This rule can be defined formally as:

(∀a1, a2/Actor)(∀n1/NFR)(specialized(a1, a2) ∧ nfr(a1, n1))
⇒ (∃n2/NFR)(specialized(n1, n2) ∧ nfr(a2, n2))

Representing NFRs and FRs 35

a1

a0

a2a

n1

n2a

u1

c1

a2b

n2b

Payment System

Credit Card Co.

Performance: support
1,000 trans/sec.

Collect Payment

PayPal

Performance: support
1,000 trans/sec.

Performance: support
1,000 trans/sec.

Customer

MemberGuest

Scalable: up to
1,000 concurrent

Customers

Scalable: up to
1,000 concurrent

Customers

Scalable: up to
1,000 concurrent

Customers

(a) (b)

explicit (source) NFRLegend propagated NFR

Fig. 4. (a) Conceptual Example and (b) Concrete Example of Actor-Associated NFRs
Propagation

Use Case. When an NFR is associated with a use case, a more or equally strict
form of NFR should be considered for its directly and indirectly specialized use
cases as well as the use cases that are directly or indirectly included or extending
the original use case. Fig. 5.a and Fig. 5.b show a conceptual and a concrete
examples of this NFR propagation. This rule can be formally defined as:

[(∀u1, u2/Usecase)(∀n1/NFR)(specialized(u1, u2) ∧ nfr(u1, n1))
⇒ (∃n2/NFR)(specialized(n1, n2) ∧ nfr(u2, n2))]
∧ [(∀u1, u3/Usecase)(∀n1/NFR)(include(u1, u3) ∧ nfr(u1, n1))
⇒ (∃n3/NFR)(specialized(n1, n3) ∧ nfr(u3, n3))]
∧ [(∀u1, u4/Usecase)(∀n1/NFR)(extended(u1, u4) ∧ nfr(u1, n1))
⇒ (∃n4/NFR)(specialized(n1, n4) ∧ nfr(u4, n4))]

Communicate Association. When an NFR is associated with an Communi-
cate Association (CA), which links between an actor, say A, and a use case (say
U), a more strict form of NFR can be considered and associated with all com-
municate associations that link between specialized actors of A and specialized
use cases of U. Fig. 6.a and 6.b show a conceptual and a concrete examples of
this NFR propagation. This rule can be formally defined as:

(∀c1, c2/CA)(∀n1/NFR)(a1 = actor(c1))(a2 = actor(c2))
(u1 = usecase(c1))(u2 = usecase(c2))
(specialized(a1, a2) ∧ specialized(u1, u2)
∧ ca(a2, u2) ∧ nfr(c1, n1))
⇒ (∃n2/NFR)(specialized(n1, n2) ∧ nfr(c2, n2))

36 L. Chung and S. Supakkul

(b)(a)

u1

u7

u2a

a1

u6 extends

u4a

extends

u3a

includes

u5includes

n1

n2b

n3a

u2b

n2a

u3b

includes

n3b

u4b

extends

n4a

n4b

Perform on-line transaction

Deposit fund

User

Log transaction

includes

Performance: turn
around time <= 8

secs.

turn around
time < 8 secs

Withdraw fund

turn around
time <= 8 secs

turn around
time <= 8 secs

Notify out-of-cash

extends

turn around
time <= 8 secs

Fig. 5. (a) Conceptual Example and (b) Concrete Example of Use Case-Associated
NFRs Propagation

4 A Process for Applying the Framework

This section presents a process for using this requirements representation and
integration framework. It is an iterative and interleaving process where refining
existing artifacts and repeating previous steps can be performed as needed. Fig-
ure 7 is a UML activity diagram depicting the process. The following describes
steps in the process using the pricing system presented in sec. 2.1 as an example.

Step 1 - Define System Boundary and Global NFR Softgoals
In this step, we identify the system in question, then define and associate any
applicable global NFR softgoals and appropriate criticality. As an example, the
customer of the pricing system stated that the new system would support domes-
tic and international users. Therefore, minimizing the distribution of user inter-
face application and field support cost were important. These NFRs were rep-
resented by NFR softgoal Serviceability: minimum client side support
for world-wide users and associated with the system boundary
Step 2 - Identify Actors and Related NFR Softgoals
This step identifies the roles played by external entities. Organize them with gen-
eralization/ specialization relationship. Also identify actor related NFR softgoals
with appropriate criticality.
Step 3 - Identify Use Cases and Related NFR Softgoals
Identify use cases for each actor. Organize use cases with generaliza-
tion/specialization, extend, or include relationships. Identify use case or com-
municate association related NFR softgoals with appropriate criticality. For use
cases that are used by multiple actors, a single generalized actor should be in-
troduced to represent the role using those use cases [8]. For the pricing system,

Representing NFRs and FRs 37

a1

a0

a2a

n1

n2a

u1

u2a

c1

c2a

u0

l0

a2b

n2b

u2b

c2b

Service Item Planner Create Service Item

Procurement Manager
Approve Price Proposal

User Access On-line Function

User Friendly:
for world-wide

users

User Friendly:
for world-wide

users

User Friendly:
for world-wide

users
(b)(a)

Fig. 6. (a) Conceptual Example and (b) Concrete Example of Communicate
Association-Associated NFRs Propagation

the customer stated that for confidentiality and competitiveness, Suppliers must
not be aware of each other presence and proposed prices. This NFR was repre-
sented as Confidentiality: suppliers may not see each other identity
and proposals and associated with the communicate association between
Supplier actor and Submit Price Proposal use case. Because the system
would be used in many countries, the user interface must be user friendly. This
NFR was represented as User Friendly: support international users as-
sociated with the communicate association between Supplier actor and Submit
Price Proposal use case.
Step 4 - Relocate Common NFRs Softgoals
Revisit previously identified NFR softgoals and determine if any of them should
also be associated with other use case elements. For those NFRs that are associ-
ated with use cases, define a generalized use case for them, then move the NFR
to this new use case. For those NFRs that are associated with actors, define
a generalized actor, then move the common NFRs to the new actor. For those
NFRs that are associated with Communicate Association (CA), define a new set
of generalized use case, generalized actor, and a CA between them, then move
the NFR to the new CA. For the pricing system, we determined that the user
friendliness NFR should also be applicable to all use cases that are accessible
to all human users. Therefore, we defined a new generalized actor called User
to be associated with the new Perform On-line Function use case. We then
moved the user friendliness NFR softgoal to the new communicate associa-
tion. Figure 8 shows the result of this NFR relocation.
Step 5 - Refine and Satisfice NFR Softgoals
Use the NFR softgoals identified up to this point as the root NFR softgoals
of an SIG. To name the NFR softgoals on the SIG, use the use case elements

38 L. Chung and S. Supakkul

1. Define system boundary and global NFRs

2. Identify actors and related NFRs

3. Identify use cases and related NFRs

Relocate common NFRs

5. Refine and satisfice NFR softgoals

6. Satisfice operationalizing softgoals

7. Develop design for use cases

Fig. 7. The Goal-Oriented and Use Case Driven Analysis and Design Process

as Topic for the NFRs. If necessary, refine the NFR softgoals using AND or
OR decompositions. Then identify operationalizing softgoals, analyze trade-offs,
and select the operationalizing softgoals that satisfice the NFR softgoals. We
categorize operationalizing softgoals into functional and non-functional opera-
tionalizing softgoals. Functional operationalizing softgoals are function to be per-
formed by the system or external agents to meet NFR softgoals. For example,
authentication operationalizing softgoals may be decomposed to system function
to authenticate user at login. Non-functional operationalizing softgoals are non-
functional decisions such as architectural decisions, personnel or environmental
such as using restricted access room or video camera to help satisfice a security
NFR softgoal. For the pricing system, we started with the NFR softgoals de-
fined initially in the use case diagram with use case elements serve as the Topic.
The initial NFR softgoals include User Friendliness[User-Perform Online
Function], Serviceability[Pricing System], and Confidentiality
[Supplier-Submit Proposal]. We then decomposed the NFR softgoals and de-
termined and selected operationalizing softgoals to satisfice the NFR softgoals as
shown in Fig. 9. Notice that operationalizing softgoal Maintain Locale Info is
a functional operationalizing softgoal; therefore, it is mapped to a new use case
called Maintain User Locale.
Step 6 - Satisfice Selected Operationalizing Softgoals
Map functional operationalizing softgoals to new use cases to represent the
new system functions. Iterate to Step 3 to analyze the new use cases and re-
lated NFRs. For selected non-functional operationalizing softgoals, map them
to concrete architectural or environmental decisions. For example, to satisfice
the Localized input/output[Language] NFR softgoal for the pricing system,
we identified User-defined localization operationalizing softgoal, which in
decomposed to Maintaining locale info, Appl info stored with locale
info, and Display info in user locale operationalizing softgoals. More spe-
cific design decisions, including Maintain user profile use case, Using user

Representing NFRs and FRs 39

Bill of Material System
Update Bill of Material

Pricing System

Service Item Planner Create Service Item

Supplier

Send RFP

extends

Submit Price Proposal

Procurement Manager
Approve Price Proposal

UserSupplier Perform On-line Function Confidentiality:
Suppliers may not see
each other identity and

proposals

Serviceability:
minimum client side
support for world-

wide users
User Friendly:
for world-wide

users

!!

!

Fig. 8. The Integrated Use Case Diagram with NFRs and FRs

profile sub-system, Multi. prog. lang., and Multi. lang. database are
identified to satisfice the general ones.
Step 7 - Develop Architecture and Design for the Use Cases
Develop a software architecture and design based on the operationalizing soft-
goals and their satisficing to realize the use cases. For the pricing system, we
developed a UML component diagram [9] to identify the sub-systems of the
pricing system and their dependency as shown in Fig. 10.a. For each use case,
we developed interaction diagram(s) (e.g. sequence diagrams), to envision how
the use case would be realized through the interaction among system compo-
nents. Figure 10.b shows a sequence diagram of the Submit Price Proposal
use case.

5 Industrial Feedback

We have applied the NFR Framework at a telecom company where we ana-
lyzed the existing requirement statements of an ongoing project to determine
whether they were correct and complete for meeting the business goals. We de-
veloped an SIG to identify business level NFR softgoals and the corresponding
operationalizing softgoals. These operationalizing softgoals are the ideal system
requirements. We then reverse-engineered existing system level requirements to
operationalizing softgoals. The result showed that the two set of operationaliz-
ing softgoals did not match, which could indicate missing, wrong, or gold plating
requirements. The joint architecture team that reviewed the analysis result ap-
preciated how the decision process and rationale were clearly documented in the
SIG. We also introduced the technique for representing NFRs and FRs in the
use case model to a software vendor that was developing a pricing system for a

40 L. Chung and S. Supakkul

Serviceability
[Server
components]

++

On-line
help

+

[Input/Output
Format]

User Friendliness
[User - Perform On-line
Function A-UA]

[Help]

Tech support

[Date/time] [Language]

Actual
localization

User defined
localization

+
+

Maintaining
locale info

Appl info
stored with
locale

Displaying info
in user locale

Using
Service Item
component

Using User
Profile
component

X

Requires client-side
scripting and
permission, which can
be disabled by the
user.

Design/architecture of
Create Service Item,
Approve Price
Proposal, Submit
Price Proposal use
cases

Maintain User
Profile Use
Case

Using
Pricing
component

+

Serviceability
[Pricing System]

Serviceability
[Client
components]

!

!

Serviceability
[Installation]

Serviceability
[Tech support]

+
Generic
universal display
platform

+ +

Confidentiality
[Supplier - Submit
Proposal A-UA]

Confidentiality
[Supplier identity]

Displaying only RFPs
and proposals
belonging to user's
company

Confidentiality
[Supplier proposals]

User's company is
a mandatory query
parameter for RFP,
proposal retrieval

+

!!

User Friendliness
[...,Service Item Planner
- Create Service Item
CA]

User Friendliness
[...,Procurement Manager
- Approve Price Proposal]

+ + ++

User Friendliness
[...,Supplier - Submit
Price Proposal]

......

Supplier info. not
displayed and
selectable. Use
company ID from
user profile.

-

+

Web Browser

++ ++

A

C

B

Fig. 9. Softgoal Interdependency Graph (SIG) of the Pricing System

major airlines (its simplified version is presented in this paper). We found that
the association points in the use case model were intuitive and useful during re-
quirement elicitation. Some of the works presented in this paper were the result
of these feedbacks.

6 Conclusions

In this paper, we have proposed a goal-oriented and use case driven approach
for representing NFRs and FRs. Using the use case model as the basis for NFRs
identification and integration is important as it is the current de facto standard
method for requirements elicitation and modeling. The contributions of this
framework include: 1) an intuitive approach for using use case model elements
to provide context for NFRs. 2) NFR propagation rules to eliminate redundant
specification for common NFRs; and 3) a process for representing and integrating
NFRs and FRs. Much remains to be done in this research. It needs to go through
more usage to validate and help refine the framework such as in the area of the
organization of NFRs along different relationship types in the use case model.
We also aim to develop a metamodel to provide precise definition of the relevant
concepts, which is an important basis for tool support.

Representing NFRs and FRs 41

Web
Presentation

Pricing User Profile Data Access

Supplier

1: prepare proposal

1.1: getRFP (user)

1.1.1: getCompany (user)

1.1.2: getRPF (company)

1.2: getLanguageLocale (user)

1.3: getTimeZone (user)

2: submitProposal (proposal)

2.1: submitProposal (proposal)

2.1.1: submitProposal (company, proposal)
2.1.1: getCompany (user)

Traceable to
(C) on SIG

Traceable to
(A) on SIG

(a) (b)

Traceable to
(B) on SIG

Web
Presentation

Pricing

Service Item

User Profile

Bill of
Material

Data Access

Fig. 10. (a) Component Design of the Pricing System, (b) A behavioral model for
Submit Price Proposal Use Case

References

1. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley (1999)

2. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers (2000)

3. Cysneiros, L., do Prado Leite, J.: Nonfunctional requirements: from elicitation to
conceptual models. IEEE Transactions on Software Engineering 30 (2004) 328–350

4. Moreira, A., Brito, I., Arajo, J.: Crosscutting quality attributes for requirements
engineering. The fourteenth International Conference on Software Engineering and
Knowledge Engineering (SEKE’02) (July 15-19, 2002) 167–174

5. Lee, J., Xue, N.: Analyzing user requirements by use cases: A goal-driven approach.
IEEE Software (July/August 1999) 92–100

6. Dimitrov, E., Schmietendorf, A.: UML-based performance engineering possibilities
and techniques. IEEE Software (January/February 2002) 74–83

7. Mylopoulos, J., Chung, L., Nixon, B.A.: Representing and using nonfunctional
requirements: A process-oriented approach. IEEE Transactions on Software Engi-
neering 18 (1992) 483–497

8. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley (1999)

9. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. 2nd edn. Addison-Wesley (2005)

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 42 – 57, 2005.
© Springer-Verlag Berlin Heidelberg 2005

MARMI-RE: A Method and Tools for Legacy System
Modernization

Eun Sook Cho1, Jung Eun Cha2, and Young Jong Yang2

1 Div. Of Computer & Information Science,
Dongduk Women's University,

23-1 Wolgok-dong, Sungbuk-gu, Seoul 136-714, Korea
escho@dongduk.ac.kr

2 Software Engineering Department,
Electronics and Telecommunications Research Institute,

161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea
{mary2743@, yangyj}@etri.re.kr

Abstract. Software evolution is the process of adapting an existing software
system to conform to an enhanced set of requirements. Software reengineering
is software evolution performed in systematic way. Especially software system
is fundamentally different from developing one from scratch. Consequently,
tools to support evolution must go beyond forward engineering tools. This
paper presents a reengineering method and tools for software evolution or
modernization. The paper briefly describes MARMI-RE methodology before
presenting the individual tools and how they interoperate to support legacy
system modernization. We expect that our proposed methodology can be used
flexibly because it presents various scenarios of migration process.

1 Introduction

Legacy software systems may be defined informally as “large software systems that
we do not know how to cope with but that are vital to our organization” [1]. Many
legacy systems are performing crucial work for their organizations, and usually they
represent years of accumulated experience and knowledge. We must trade-off the cost
of continuing to cope with the legacy system against the investment needed to
improve it and the benefit of easier subsequent maintenance [1,2].
 System evolution is a broad term that covers a continuum from adding a field in a
database to completely re-implementing a system. These system evolution activities
can be divided into three categories [3]: maintenance, modernization, and
replacement. Fig. 1 illustrates how different evolution activities are applied at different
phases of the system life cycle. The dotted line represents growing business needs
while the solid line represents the functionality provided by the information system.
Repeated system maintenance supports the business needs sufficiently for a time, but
as the system becomes increasingly outdated, maintenance falls behind the business
needs. A modernization effort is then required that represents a greater effort, both in
time and functionality, than the maintenance activity. Finally, when the old system
can no longer be evolved, it must be replaced[4].

 MARMI-RE: A Method and Tools for Legacy System Modernization 43

Fig. 1. Information System Life Cycle

 Until now, many researches for reengineering legacy system have been progressed.
However, most approaches focuses on only reverse engineering or some of
reengineering process. For example, there is only program analysis, design recovery,
restructuring programs, and so on. Especially researches for reengineering approaches
for component-based system are few conducted[5]. In this paper, we propose a
reengineering methodology to transform legacy system into component-based system.
 This paper is organized as follows. Section 2 describes the related works of
reengineering methodology. Section 3 presents the process architecture of our
methodology and activities of each phase. Section 4 describes case study applied
proposed methodology into lease business management system. Section 5 presents
tools developed in order to support techniques of our methodology. Section 6
summarizes the work, concluding with future works.

2 Related Works

In this section, we describe several reengineering methodologies such as MORALE,
RENAISSANCE, and Butterfly methodology. Also, we suggest the limitations of
existing methodologies and reengineering techniques.

2.1 MORALE Methodology

The MORALE project addresses the problem of designing and evolving complex
software systems. The MORALE acronym summarizes the its goals[6]. Mission
ORiented: They want the legacy system enhancement process to be driven by the
mission to be accomplished rather than by purely technical criteria. Architectural: The
most time consuming and costly alternations to software are those that distort
architecture, by which they mean its structure and behavior. Legacy Evolution: They
want to provide a cost effective way of analyzing existing software, and once
analyzed, extracting those parts of it that can be used in the new version.

2.2 RENAISSANCE

The Renaissance1 method was developed to support the reengineering of legacy
software systems [7]. The method is structured into two main phases. The first one, or

44 E.S. Cho, J.E. Cha, and Y.J. Yang

what to do, aims to assess the organization and the legacy system and identify both
the need and urgency of reengineering and the best candidate strategy to adopt for
renewing the system: continue with the current maintenance approach; reengineer the
system from user-interface, structure, architecture, and/or design point of views;
replace the existing system with a new developed one. The second phase, or how to
do, supports the implementation of the planned transformation, and drives the overall
process of migrating the legacy system to its immortal dimension.

2.3 Butterfly Methodology

The objective of the Butterfly Methodology is to guide the migration of a mission-
critical legacy system to a target system[8,9]. The Butterfly Methodology is based on
the assumption that the data of a legacy system is logically the most important part of
the system and that, from the viewpoint of the target system development it is not the
ever-changing legacy data that is crucial, but rather its semantics or schema(s). Thus,
the Butterfly Methodology separates the target system development and data
migration phases, thereby eliminating the need for gateways.

2.4 Limitations of Existing Researches

There are several solutions; wrapping, screen scrapping, and transformation to
migrate legacy system into modern system. First of all, wrapping involves
surrounding existing data, individual programs, application systems, and interfaces to
give a legacy system a ‘new and improved’ look or improve operations[10,11].
However, this technique does not solve the problem of inertia of the legacy system,
which will remain unchanged. The most popular implementation is “Screen
Scrapping”. It reduces training costs for new employees and allows an interface to the
legacy system be placed on the desktop. Thus the problems legacy systems pose can
only be overcome using a comprehensive migration strategy[9]. The MORALE
methodology focuses on “screen scrapping”. Therefore the methodology cannot
overcome the problems legacy systems pose.
 Renaissance methodology deals with overall scope of reengineering. Therefore, its
activity is broad. Also it focuses on architecture migration. Therefore mechanical or
specific mechanisms or activities are not defined clearly. Butterfly methodology
focuses on data migration strategies and techniques. Because it deals only with data
migration problems, more systematic and stepwise activities are defined.

3 Our Approach

Until now, there has been few systematic way to identify components for reuse and to
understand the types of changes required to insert legacy system components into a
software product line or a new software architecture [12,13]. In this paper, we
suggest a new architecture-centric reengineering approach, which can reduce potential
risks and improve new system’s quality. Fig. 2 illustrates the overall reengineering
process architecture supported by the MARMI-RE methodology.

 MARMI-RE: A Method and Tools for Legacy System Modernization 45

ComponentizationComponentization

Reverse EngineeringReverse Engineering Modernization PlanModernization PlanModernization PlanModernization Plan

Understanding
Architecture Info.

Component
Mining

Understanding
Design Info.

Architecture
Transformation

Integration
Test

Component
Transformation

Program
Analysis

Acceptance
Test

Training
Users

System
Management

System
Installation

Grasping
Current

Condition

Establishing
Improvement

Business Model

Establishing
Improvement

Business Strategy

Development
Plan

Fig. 2. Overview of MARMI-RE

3.1 Modernization Plan Phase (Phase 0)

Reengineering begins with an assessment of the current system. Prior to reengineering
current legacy system, modernization plan phase is executed. Modernization plan
phase is designed to understand and estimate current system’s organization, current
system’s status, reengineering costs, future complementary components, and so on.
We outline main activities of plan phase in the following. First of all, activity of
grasping the present situation is carried out. This activity includes business
environment analysis, legacy system analysis, and maintenance task analysis. The
main activities within this phase are listed in Fig. 3.

Phase 0:
0.1 Grasp the present condition;

0.1.1 Analyze business environments;
0.1.2 Analyze legacy system analysis;
0.1.3 Analyze maintenance tasks;

0.2 Extract improvement business model;
0.2.1 Make out business use case model
0.2.2 Establish vision
0.2.3 Establish improvement architecture

0.3 Establish improvement strategies;
0.3.1 Determine reengineering scope;
0.3.2 Extract improvement strategy;

0.4 Establish development plan;
0.4.1 Define development process;
0.4.2 Write development plan document;

Phase 0:
0.1 Grasp the present condition;

0.1.1 Analyze business environments;
0.1.2 Analyze legacy system analysis;
0.1.3 Analyze maintenance tasks;

0.2 Extract improvement business model;
0.2.1 Make out business use case model
0.2.2 Establish vision
0.2.3 Establish improvement architecture

0.3 Establish improvement strategies;
0.3.1 Determine reengineering scope;
0.3.2 Extract improvement strategy;

0.4 Establish development plan;
0.4.1 Define development process;
0.4.2 Write development plan document;

Fig. 3. Migration Activities in Phase 0

 In activity 0.1.1, organization structure, business workflow, and internal issues are
identified. In activity 0.1.2, the functionalities of business tasks, application system
analysis, and system environments analysis are done. System environment means
operational environment, development environment, and test environment.

46 E.S. Cho, J.E. Cha, and Y.J. Yang

 In activity 0.2.2, requirements are identified and project scope and objectives are
defined. Activity 0.2.3 establishes improvement architecture. Improvement
architecture is divided into system architecture and software architecture.

Table 1. A Sample of Reengineering Object Selection

Bn Sn Sum

V R E Q MC TD

Element

BT

30% 10% 10% 20% 20% 10% 100%

Priority

A AV +2 -1 +2 +1 -1 -3 2

 EV 60% -10% 20% 20% -20% -30% 40%

B AV 5 -3 3 4 -1 -4 1

 EV 150% -30% 30% 80% -20% -40% 170%

* Bn:Business Element, Sn:Systematic Element, V: Value, R:Risk, E:Extensibility, Q:Quality,
MC:Maintenance Cost, TD:Technical Difficulty, AV: Assigned Value, EV:Estimated Value

 In activity 0.3.1, reengineering scope is determined. In order to determine
reengineering scope, we decide business elements and systematic elements.
Furthermore, relative weight for each element is given. After reviewing these weights,
we select reengineering objects. A sample of reengineering selection is depicted in
Table 1. The ‘BT’ means business task.
 In the Table 1, A or B means business task, AV means the assigned value of each
business task, and EV means the estimated value of each business task. We divide
assessment element into business element and systematic element. We define the
value of business as 30%, the risk as 10%, and the extensibility as 10%. We regard
these values as weight value(W) of each element. AV means thing appropriate the
degree of importance for business elements and systematic elements of each business
task. The range of assigned value is from –5 to 5.
 We compute EV based on weight value of each element and AV. EV is computed
the following equation;

EV = W * AV

The sum means the assessment value of each business task. After computing the value
of sum for all business tasks, we compute average value by dividing the total sum of
all business tasks into the number of total business tasks.

For each business task, if assessment value of each business task larger than the
average value, we select the business task to modernize.

There are various scenarios to apply phases and activities into migration process
according to migration strategies in activity 0.4.1. These scenarios are shown in Fig. 4.

 MARMI-RE: A Method and Tools for Legacy System Modernization 47

MARMI-IIIMARMI-III ComponentizationComponentization DeploymentDeploymentModernization
Plan

Modernization
Plan

Reverse
Engineering

Reverse
Engineering ComponentizationComponentizationModernization

Plan
Modernization

Plan

MARMI-IIIMARMI-III ComponentizationComponentization DeploymentDeploymentModernization
Plan

Modernization
Plan

ComponentizationComponentization

Reverse
Engineering

Reverse
Engineering ComponentizationComponentization DeploymentDeploymentModernization

Plan
Modernization

Plan ComponentizationComponentization

Reverse
Engineering

Reverse
Engineering ComponentizationComponentization DeploymentDeploymentModernization

Plan
Modernization

Plan

MARMI-IIIMARMI-IIIComponentizationComponentization DeploymentDeployment

Reverse
Engineering

Reverse
Engineering ComponentizationComponentization DeploymentDeploymentModernization

Plan
Modernization

Plan

MARMI-IIIMARMI-III

Scenario2

Scenario3

Scenario4

Scenario5

Scenario6

Scenario1

Fig. 4. Possible Scenarios of MARMI-RE Process

 For example, scenario 1 can be applied in case of following:

- In case that the legacy system’s documents are enough;
- In case that the legacy system’s worker(developer, operator, or maintainer) is

exist;
- In case that the quality of legacy program’s code is high or too is supported;
- In case that the legacy source codes can be separated into modules according to

each business task;
- In case that legacy code’s reuse is needed strategically;

 In case that migration strategy is not disuse or transformation plan is incomplete;

3.2 Reverse Engineering Phase (Phase 1)

The objectives of this phase are extraction of current system’s core functionalities and
core elements, understand static and behavioral aspect of current system, and support
easily transforming current system into modern system. The activities identified
within this phase are listed in Fig. 5.
 Activity 1.1.1 restructures program’s logics by identifying codes to restructure,
eliminating redundant or dead codes with structured, and reformatting identified
codes into structured codes. This activity is supported itself with restructuring tool.
Program’s syntactic analysis, variable reference information, and semantic
information analysis for each program are achieved through activity 1.1.2. Activity
1.1.3 catches data information, system resource information, call relations among
programs, and screen flow information.
 Activity 1.2.1 and 1.2.2 can be done with parallel. Activity 1.2.1 recovers entity
relationship information from database information. Activity 1.2.2 recovers functional
information from main screen units, which are core business work’s executions. We
represent functional information as use case model.

48 E.S. Cho, J.E. Cha, and Y.J. Yang

Phase 1:
1.1 Analyze program;

1.1.1 Restructure program’s code;
1.1.2 Analyze program’s semantic information;
1.1.3 Analyze system’s semantic information;

1.2 Understand design information;
1.2.1 Understand data information;
1.2.2 Understand functional information;

1.3 Understand architecture;
1.3.1 Understand structural architecture;
1.3.2 Understand behavioral architecture;
1.3.3 Understand technical architecture;

Phase 1:
1.1 Analyze program;

1.1.1 Restructure program’s code;
1.1.2 Analyze program’s semantic information;
1.1.3 Analyze system’s semantic information;

1.2 Understand design information;
1.2.1 Understand data information;
1.2.2 Understand functional information;

1.3 Understand architecture;
1.3.1 Understand structural architecture;
1.3.2 Understand behavioral architecture;
1.3.3 Understand technical architecture;

Fig. 5. Migration Activities in Phase 1

After activity 1.2 is done, activity 1.3, architecture understanding, is executed.
Activity 1.3.1 recovers structural aspect of architecture. It abstracts subsystem units
from modules of legacy system and understands how to organize relations among
these subsystems. Activity 1.3.2 understands and recovers how call relations among
subsystems are achieved based on structural architecture information.

3.3 Componentization Phase(Phase 2)

All the components of legacy system are migrated to the target system during this
phase. In this phase, “Forward” engineering principles and methods will be one of the
guidelines for migration. Fig. 6 lists activities in this phase.
 Activity 2.1 is very important to migrate legacy system into component-based
system. We adopt use case driven approach to mine reusable components from legacy
system. In order to mine reusable components, first of all, activity 2.1.1 should be
done. Activity 2.1.1 is done with identifying system elements related with use case.
Identifying system elements uses program analysis information, obtained from
activity 1.1, and design information, obtained from activity 1.2, of reverse
engineering phase. Especially system elements are identified for each use case
extracted from activity 1.2. For example, paragraph, program statement, global
variable, program, map file, transaction, database, and library can be system elements
in case of COBOL legacy system.
 And then, use cases are analyzed and candidate components are identified. Use
cases are analyzed with respect to boundary, control, and entity. The reason is to
identify use cases carrying out similar business functions or responsibilities, to
integrate identified use cases, and to recognize coarse-grained components. Use case
analysis process is depicted in Fig. 7. Circle means each use case, arrow means the
control flow between use cases. Thick arrow means reference relation between use
case and map file(screen file). And then, candidate components are identified with
identifying and grouping use cases with similar business function or responsibility
and grouping.

 MARMI-RE: A Method and Tools for Legacy System Modernization 49

Phase 2:
2.1 Mine reusable components;

2.1.1 Grasp components;
2.1.2 Extract components;
2.1.3 Identify components;
2.1.4 Assess identified components;

2.2 Transform software architecture;
2.2.1 Review transformation strategies;
2.2.2 Define software architecture;
2.2.3 Define system architecture;

2.3 Convert components;
2.3.1 Design component interface;
2.3.2 Design interaction among components;
2.3.3 Design internal structure of components;
2.3.4 Specify component interface;
2.3.5 Design component’s detailed information

2.4 Develop components;
2.4.1 Implement user interface components;
2.4.2 Implement business components;
2.4.3 Execute unit test;

2.5 Execute integration test;
2.5.1 Integrate components
2.5.2 Execute integration test;
2.5.3 Execute system test;

Phase 2:
2.1 Mine reusable components;

2.1.1 Grasp components;
2.1.2 Extract components;
2.1.3 Identify components;
2.1.4 Assess identified components;

2.2 Transform software architecture;
2.2.1 Review transformation strategies;
2.2.2 Define software architecture;
2.2.3 Define system architecture;

2.3 Convert components;
2.3.1 Design component interface;
2.3.2 Design interaction among components;
2.3.3 Design internal structure of components;
2.3.4 Specify component interface;
2.3.5 Design component’s detailed information

2.4 Develop components;
2.4.1 Implement user interface components;
2.4.2 Implement business components;
2.4.3 Execute unit test;

2.5 Execute integration test;
2.5.1 Integrate components
2.5.2 Execute integration test;
2.5.3 Execute system test;

Fig. 6. Migration Activities in Phase 2

Data
Gathering

Computation

Record
Field

Assignment

DB/File
Output

Screen
Creation

Database
/File

Screen
File

use case workflow

Control

Entity

Boundary

Fig. 7. Use Cases Analysis Process

Activity 2.1.2 includes understanding common elements, component identification,
association and interaction among components. The objective of understanding
common elements is to construct separate components with high reusability from
other components. Basically components with high reusability can be shared among
several functions in a system. A method to identify common elements uses
association table shown in Table 2.

As shown in Table 2, use case UC1 and UC2 share P11, P12, P13, and P14.
However, UC3, UC4, and UC5 share only both P12 and P13. Therefore, common
elements between two candidate components, Comp1 and Comp2, are P12 and P13.

50 E.S. Cho, J.E. Cha, and Y.J. Yang

Table 2. Association Table

 UC1 UC2 UC3 UC4 UC5

 Pg1 Pg2 Pg3 Pg4 Pg6 Pg7 Pg8 Pg9

S
u
b
P
r
o
g
r
a
m

P11

P12

P13

P14

…

Pn

3.4 Deployment Phase (Phase 3)

During the delivery phase, the users take final delivery of the system, while operating
under realistic conditions. Under the supervision of the users, the actual enterprise
data managed by the legacy system is migrated to the new system.
 The first task of deployment is to install the new system on site-On the actual
hardware upon which it will operate, with the actual software packages, etc. This is
done together with the onsite operational personnel. Also training system users are
executed with parallel. Main activities of this phase are listed in Fig. 8.

Phase 3:
3.1a Install systems;

3.1.1 Install operating resources;
3.1.2 Install application system;
3.1.3 Migrate data into new system;

3.1b Educate system users;
3.2.1 Prepare education environment and etc;
3.2.2 Educate users;

3.2 Execute acceptance test;
3.2.1 Prepare acceptance test;
3.2.2 Execute acceptance test;
3.2.3 Assess the results of acceptance test;

3.3 Manage system after system installation;
3.3.1 Inspect installed system;
3.3.2 Review and update deliverables from the customers

Phase 3:
3.1a Install systems;

3.1.1 Install operating resources;
3.1.2 Install application system;
3.1.3 Migrate data into new system;

3.1b Educate system users;
3.2.1 Prepare education environment and etc;
3.2.2 Educate users;

3.2 Execute acceptance test;
3.2.1 Prepare acceptance test;
3.2.2 Execute acceptance test;
3.2.3 Assess the results of acceptance test;

3.3 Manage system after system installation;
3.3.1 Inspect installed system;
3.3.2 Review and update deliverables from the customers

Fig. 8. Migration Activities in Phase 3

 MARMI-RE: A Method and Tools for Legacy System Modernization 51

4 Case Study

In this section, we present a case study of applying MARMI-RE in modernizing
legacy COBOL system; capital business management system. This system is a
COBOL-based system which being operated in IBM AS/400 Machine. This system
has 124 programs containing 30thousands line of code. A capital company merges
three companies and operates heterogeneous three lease management systems. This
company tries to transform heterogeneous systems into unified and modernized
systems in order to reduce maintenance costs and operate systems effectively.

4.1 Phase 0

In order to understand existing tasks and present information effectively and
systematically, we established examination. We produced organization chart, task
workflow diagram, and analysis report of existing condition. Fig. 9 shows an example
of task workflow diagrams. Fig. 9 describes total workflows of lease task.
 Also we produced analysis report for legacy system. Total businesses to migrate
consist of 5 systems and 36 sub systems. We only focused on business management
system of total business tasks.

Fig. 9. An Example of Task Workflow Diagram

 Table 3 shows program lists contained in legacy lease management system. For
each program, program name, program’s lines and program description are depicted.

Table 3. Program Lists of Legacy System

No Program Lines Description
1 Lp1000.mbr 233 Total business
2 Lp1010.mbr 231 Lease business
3 Lp1020.mbr 222 Lease Post Management
4 Lp1030.mbr 222 Funds Management
5 Lp1040.mbr 230 Account Management
… … … …

52 E.S. Cho, J.E. Cha, and Y.J. Yang

 Second activity of Phase 0 is to extract improvement business model. We produced
a use case diagram to extract improvement business model. Fig. 10 depicts of use case
diagram for lease management.

Customer Public Relation Management

Marketing Staff

Consultant

Counsel Management

Consultation Management

Contract Manager

Contract Management

Asset Management Asset Manager

Insurance Manager

Common Management

Security Management Security Manager

Insurance Management

Fig. 10. Use Case Diagram for Lease Management

4.2 Phase 1

In reverse engineering phase(phase 1), we recovered design and program information
through activity 1.1, 1.2, and 1.3.
 Fig. 11 shows an example of subroutine call graph for lease business tasks. A blue
box means a program, and red box means subroutine.

Fig. 11. An Example of Subroutine Call Graph

 Fig. 12 shows an example of subroutine control flow for lease business
management.

Fig. 12. Subroutine Control Flow Graph

 MARMI-RE: A Method and Tools for Legacy System Modernization 53

 Fig. 13 shows an example of application use case diagram. While business use case
diagram is extracted from business tasks, application use case diagram is extracted
from existing legacy system.

LeaseHolder

Contract Manager

Business Consultant Business Consulting

Business ConsultantBusiness Management

Insurance Manager

Asset ManagerAsset Management

Security Management

Insurance Management

Security Manager

<<extend>>

Common Management

<<extend>>

<<extend>>

Contract Management

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Fig. 13. An Example of Application Use Case Diagram

 Table 4 shows mapping table between business use cases and application use cases.

Table 4. Use Case Mapping Table

No of BU BU’s name AU’s NO AU’s name
BU-1 Public Relation
BU-2 Counsel Management AU-1 Business Management
BU-3 Consultation

Management
AU-2 Business Management

BU-4 Contract Management AU-3 Contract Management
BU-5 Security

Management
AU-4 Security Management

BU-6 Insurance Management AU-5 Insurance Management
BU-7 Asset Management AU-6 Asset Management
BU-8 Common Management AU-7 Common Management

4.3 Phase 2

In this phase, we first produced association table to identify shared elements. Table 5
shows some parts of association table extracted from legacy system.
 Table 6 shows a component specification for business consultation component.
Identified components should be mapped into application use cases and business use
cases. The reason is that we confirm whether functional requirements of existing and
future system are reflected into components appropriately or not.
 Also we should establish modernization strategies for identified components;
wrapping, transformation, screen scrapping, and replacement.
 Component architecture for component-based modern system is depicted in
Fig. 14.

54 E.S. Cho, J.E. Cha, and Y.J. Yang

Table 5. Association Table

Task Sub-Prog/File

Program

Code
Check

Message
Edit

Date
Verify

Lease
No

Screen

 LPGT

CODE

LPGT

MSGS

LPGTI

LCK

LMG

YCMF

SKREE

N

Business

Counsel

1101 Input Business

Info.

 7107 Change

Business Info.

 1201 Input Customer

Info

 1205 Input Lease

Condition

 1104 Write Counsel

Report

 1102 Receipt Counsel

 1103 Counsel

Company Spec.

 1105 Contract

Estimation

Table 6. Component Specification for Business Consultation Component

Component’s Name Business Consultation
Containing Program Input Business Info
 Changing Business Info
 Input Customer Info
 Input Lease Condition
 Write Counsel Report
 Receipt Counsel
 Counsel Company Spec
 Contract Estimation
Composition DB Customer DB,Lease Info
Composition Map SCREEN
Association

Fig. 14. Component Architecture for Lease Business Management System

 MARMI-RE: A Method and Tools for Legacy System Modernization 55

5 Tool Support

Proposed MARMI-RE methodology is supported by reengineering tool, called
REFLECT(REengineering tool For LEgacy Cobol Transfomation). Fig. 15 shows the
framework of REFLECT tool. The REFLECT is a supporting tool that creates
wrapper components based on COBOL legacy system and connect with EJB
component system. COBOL analyzer creates defined syntax file by using JavaCC. It
produces abstract syntax tree (AST) through lexical analysis and syntax analysis
process by regard COBOL program as input, and saves AST and symbol table into
information repository. Understanding tool supports users to understand analysis
information easily for legacy program’s analysis information. Therefore it provides
convenience of maintenance.

Code AnalyzerCode Analyzer

JCL Analyzer

CICS Analyzer

COBO Analyzer

SQL Analyzer

Component
Tester

Component
Deployer

Visualization
Tool

Re-documentation
Tool

EJB Code
Generator

Business Logic
Extracter

Workflow
Identifier

System Understanding Tool

EJB Wrapper Generator

EJB Code
Generator

Business Logic
Extracter

Workflow
Identifier

System Restructuring Tool

Restructured COBOL
System/Code

EJB
Components

Code Analysis
Information

COBOL
Legacy
System/Code

Fig. 15. Framework of REFLECT Tool

 Understanding tool is divided into two types: visualization tool and re-
documentation tool. Visualization tool is shown in Fig. 16.

Fig. 16. Visualization Tool

56 E.S. Cho, J.E. Cha, and Y.J. Yang

 System restructuring tool is a tool that restructure unstructured source program into
commonly recognizable and easily understandable program for system migration or
maintenance. Especially EJB code generator creates EJB wrapper component
automatically to connect COBOL system with EJB-based component system.

6 Conclusion

In this paper a new approach to the problem of legacy system migration has been
presented. The existing migration processes have dealt broadly or limitedly.
Especially the migration process as a whole is a very complex procedure
encompassing many different cases. The proposed MARMI-RE methodology is
applied into the whole process of legacy system migration with the main focus
specifically on the migration of legacy business logic, which is high reusable part in
the modernization strategies. In the future work, we integrates proposed MARMI-RE
methodology with forward engineering methodology; MARMI. Also, we identify and
develop necessary tools to support legacy modernization or migration workflows.

References

1. SEI(1996), “Assessing the Evolability of a Legacy System”, Software Engineering
Institute, Carnegie Mellon University.

2. William Ulrich, Legacy Systems : “Transformation Strategies”, Prentice Hall, 2002.
3. Weiderman, Nelson H.; Bergey, John K.; Smith, Dennis B.; & Tilley, Scott R. Approaches

to Legacy System Evolution(CMU/SEI-97-TR-014). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University. Available WWW

 <URL:http://www.sei.cmu.edu/publications/documents/97.reports/97tr014/97tr014abstract.
 html> (1997).

4. Rick Kazman, Steven G. Woods, S. Jeromy Carriere, “Requirements for Integrating
Software Architecture and Reengineering Models: CORUM II”, Fifth Working Conference
on Reverse Engineering, Honolulu, Hawaii, Oct, pp. 154-163, 1998.

5. Ransom, J.; Sommerville, I.; & Warren, I. “A Method for Assessing Legacy Systems for
Evolution,” Proceedings of the Second Euromicro Conference on Software Maintenance
and Reengineering (CSMR98), Florence, Italy, March 8-11, 1998.

6. Gregory A., et. al., “MORALE: Mission Oriented Architectural Legacy Evolution”,
Proceedings of International Conference on Software Maintenance'97, Bari, Italy,
September 29-October 3, pp.150-159, 1997.

7. Nelson Weiderman, Dennis Smith, Scott Tilley, “Approaches to Legacy System
Evolution”, CMU/SEI-97-TR-014.

8. Bing Wu, et. al., “The Butterfly Methodology: A Gateway-free Approach for Migrating
Legacy Information Systems” Proceedings of the 3rd IEEE Conference on Engineering of
Complex Computer Systems(ICECCS97), Villa Olmo, Como, Italy, September 8-12,
pp.200-205, 1997.

9. Bing Wu, et. al., “Legacy Systems Migration – A Method and its Tool-kit Framework”,
Proceedings of the APSEC’97/ICSC’97:Joint 1997 Asia Pacific Software Engineering
Conference and International Computer Science Conference, Hong Kong, China, 2-5
December, pp.312-320, 1997.

 MARMI-RE: A Method and Tools for Legacy System Modernization 57

10. Systems Techniques Inc., “Wrapping Legacy Systems for Reuse: Repackaging vs.
Rebuilding”, http://www.systecinic.com/white/splist.html.

11. Sneed, H.M, “Encapsulating Legacy Software for Use in Client/Server System”,
Proceedings of Working Conference on Reverse Engineering(WCRE’96), Moterey, Calif.,
Nov.8-10, pp.104-119, 1996.

12. Clements, P. & Northrop, L. Software Product Lines: Practice and Patterns, Boston,
MA:Addison Wesley Longman, Inc., 2001.

13. Muller, H.; Jahnke, J.; Smith, D.; Storey, M.; Tilley, S. & Wong, K., “Reverse
Engineering: A Roadmap”, 47-60, The Future of Software Engineering, New York,
NY:ACM, 2000.

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 58 – 70, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Study on Frameworks of Component Integration for
Web Applications*

Haeng-Kon Kim
1
, Hae-Sool Yang

2
, and Roger Y. Lee

3

1
Department of Computer Information & Communication Engineering,

 Catholic University of Daegu
 hangkon@cu.ac.kr 2

 Graduate School of Venture, HoSeo Univ. Bae-Bang myon, A-San,
Chung-Nam, 336-795, South Korea
 hsyang@office.hoseo.ac.kr 3

 Dept. of Computer Science, Central Michigan Univ. Mt.Pleasant,
MI 48859,U.S.A

 lee@cps.cmich.edu

Abstract. As web application systems become increasingly complex to build
developers are turning more and more to integrating pre-built components from
third party developers into their systems. This use of Commercial Off-The-Shelf
(COTS) software components in system construction presents new challenges to
web system architects and designers. Web applications are seldom developed in
isolation. Frequently there are many projects building, maintaining and evolving
the applications, each with its own life cycle of requirements, design and
implementation. To gain improvements in productivity and quality across these
applications, it is necessary to consider the main element of theses solutions, to
abstract them from the individual solutions, and to manage them as a core asset
of the organization. The continuing increase of interest in Component Based
Development (CBD) signifies the emergence of a new development trend within
the Web application industry. This paper describes issues raised when
integrating COTS components for web application, outlines strategies for
integration, and presents some informal rules we have developed that ease the
development and maintenance of such systems.

Keywords: CBD, Web Application, Component Modeling, Component
Architecture, Repository

1 Introduction

Modern web application systems are becoming increasingly expensive to build and
maintain and users are becoming more sophisticated in terms of the capability they
expect. To build such systems, developers must use a large number of standards,
protocols, technologies, and tool kits, each one of which is complex and involves a
steep learning curve. Development organizations have met this challenge by using

* This research was supported by University IT Research Center Project.

 A Study on Frameworks of Component Integration for Web Applications 59

off-the-shelf software components that have been developed outside their
organization and which provide much of the functionality and capability required,
rather than building their own components. Components that are bought from a
third-party vendor and integrated into a system are defined as Commercial
Off-The-Shelf (COTS) software components. Building a system from a set of COTS
components introduces a different set of problems than building a system from
scratch or building a system by re-using components that have been previously
constructed internally in the development organization [1,2]. Many of these problems
are introduced because of the nature of COTS components: they are truly black-box
and the developers have no method of looking inside the box; developers have little
or no influence over the maintenance. Evolution of the components and the behavior
of the component may be inadequately specified to understand its behavior in a
multi-component system. Often the COTS component is meant to run as a standalone
application and has no mechanism for interacting with other programs. In order to
address these problems we have been experimenting with building systems by
integrating COTS components. Among the objectives of these experiments is to look
at: technologies that support component integration such as CORBA or ActiveX;
languages that are useful for gluing components together [3,4,5] and system
architectures for using COTS components [6,7,8,9].

 In Web application development projects on a commercial scale, view support is
highly desirable for a number of reasons. First, the Web development projects are
multi-user environment in most cases. Accordingly, many users who have different
perceptions on a Web system exist and what they want from the system is different
for each user. Second, as Web grows to incorporate new kinds of information, the
definition of the Web system must also extend consequently. Without the effective
solution for expansion, the ever-growing network of information becomes hard to
maintain and finally will be a chaos. Third, it might become necessary to restructure
the Web system although the content of overall information remains the same. Web
applications are seldom developed in isolation. Frequently there are many projects
building, maintaining and evolving applications, each with its own life-cycle of
requirements, design and implementation. To gain improvements in productivity and
quality across these applications it is necessary to consider the main element of theses
solutions, to abstract them from the individual solutions, and to manage them as a
core asset of the organization. These key assets consists of two things: The
components which form the building blocks of an application; The patterns
describing how these component can be used in combination to satisfy some higher
level business need.

In this paper, we try to find a component based Web design methodology by
optimizing various objectives of users, designers and developers. We propose the
component based Web design methodology. It considers the pre-mentioned aspects
of design and maintenance for Web application using component. This paper also
describes issues raised when integrating COTS components, outlines software
architecture for integration, and presents some informal rules.

60 H.-K. Kim, H.-S. Yang, and R.Y. Lee

2 Related Works

2.1 Domain Analysis

Component-based Software development process presented in this study is as in Fig.
1.Our process model for component-based software development explicitly considers
reuse-specific activities, such as componential design, component identification, and
component adaptation. It is comprised of seven major activities, starting with context
comprehension and requirement analysis, continuing with the combination of
componential design and component identification, component creation, component
adaptation, and finally ending with component assembly. Throughout the process,
explicitly stated domain artifacts- domain Specifications, domain model, and domain
architecture - are produced. Component-based Domain Engineering depends on the
component-based software development process.

Fig. 1. Domain based CBD process

2.2 Repository

Component repository as in figure 1 is a library system that supports finding, providing
and managing components for building a business application. So it is a kind of tool to
store, register manage all of the artifacts produced in the component life cycle based
on component architecture, and support a Reuse with component in the CBD process
through performing advanced retrieval and browsing of information. Most of all,
component repository is a central mediator for component generation and utilization.
So, analyzing and applying consistent meta and user feedback information can
establish the CBD process including creation, verification, configuration management
and circulation of component[3,4].

2.3 CBD Process

CBD promises cost-effective productivity assuring a high flexibility and maintenance
by assembling the components as independent business processing. The parts. The
CBD environment is divided into two aspects according to process evolution level.
That is, we consider the CBD process as a supply process producing and providing the
commercial components into a repository, and consume process supporting component

 A Study on Frameworks of Component Integration for Web Applications 61

utilization for constructing business solutions in figure 1 [6,7]. The big picture
represents essential works for realizing the CBD process, subjecting the basic
principles for component reuse that is acquisition understanding applying as shown in
figure 1.

2.4 Component Interfaces

In an ideal situation, component interfaces would be formally specified, and a
CBWDM would perform formal reasoning to ensure the semantic compatibility of
component implementations with their interfaces. However, such reasoning tools are
still not widely available or widely used by practitioners, and most commercial
components do not have formally specified interfaces. A global namespace of
interfaces partly solves the problem of how a CBWDM will ensure consistency
between the semantics of a provided component and the semantics required of the
component [10,11]. While there may be different interfaces providing the same
functionality in a global namespace of interfaces, two interfaces with the same name
are intended to be functionally equivalent. On a fundamental level, this greatly
simplifies the problem of matching provided components to required semantics, since
the problem is reduced to name equality. Only when components do not match at the
interface level is human intervention required: Either they are truly incompatible (i.e.,
incompatible on a semantic level), or the incompatibility is only syntactic, so that they
can be matched by simple manual adaptation (for example by wrapping one of them).
Of course, mechanisms are still needed to ensure that a component correctly
implements the semantics promised by its interfaces, but this problem already existed
along-side the component matching problem.

2.5 Component Composition and Adaptation Process

A component based development process looks different from a traditional one. The
process is bipartite: The development of components, and the composition of an
application from the components, is separated. Typically, different organizations, the
component manufacturer and the organization that wants to license and reuse the
manufactured components will execute the two process parts. We refer to these
organizations as the component developer and the application composer, respectively.
Component development is a traditional development process since all the usual lifecycle
phases are traversed. The main difference is that the end product is not a complete
application. This means that the product is comparatively small, which may make
development processes suited to small projects preferable. A CBWDM(Component Based
Web Design Methodology) in this paper can support traditional component development
and be composed those component based on ABCD architectures as in figure 2.

 In the ideal extreme, all components can be bought or otherwise obtained, since the
goal of component reuse is to minimize the implementation phase of an application.
The application composer must select the right components, connect and adapt them,
and identify and build components that might be missing. In the near future, it will not
be possible to completely eliminate the implementation phase except for trivial projects,
but it can be minimized and simplified using appropriate components and environment
capabilities. Finding components that match arbitrary requirements will be difficult or

62 H.-K. Kim, H.-S. Yang, and R.Y. Lee

impossible; instead one is forced to select from prepackaged components with given
architectural assumptions. The cost savings gained by component reuse will often make
it feasible to adapt requirements and design to the components that are available. Thus,
the availability of components must be considered during the whole process [12]. Once
the decision to reuse a certain component is made, it will have to be configured within a
CBWDM. Component configuration consists of connection and adaptation.
Components have to be connected to each other so that they can cooperate. In the
simplest case, the connector is just a link between a given required service and a given
provided service. In other words, a connector establishes how a requirement is fulfilled.
But connectors can be more complex; it is useful to have them encapsulate
functionality that logically belongs within a shared infrastructure (for example,
communication protocols in a distributed system) rather than to either of the two
components that are being connected [13]. Adaptation increases the value of
components. The more flexible and adaptable a component is, the more often it will be
reused. Ideally, a component will provide ways for application composers to adapt it.
However, a component manufacturer will not be able to foresee all adaptations that
might be necessary. For this reason, there should be means to adapt a component
externally without having to interact with it, for example wrapping.

Fig. 2. Component Composition on Architecture

2.6 Other Approaches for Web Applications

2.6.1 Enhanced O-R Model (EORM)
Object-oriented ideas have been used in the hypermedia field for several years.
EORM[6] was the first object-oriented design methodology. EORM consists of 3
frameworks including class framework, composition framework and GUI framework
as shown in figure 3. The main concepts of EORM in Figure4 are explained as follows.

•Class framework
Two activities are related to this framework: class identification and class refinement.
The first step is to identify relevant classes from the problem domain. Class
refinement is about detailing the information of each classes by defining its attributes,
operations, and inheritance relationships.

 A Study on Frameworks of Component Integration for Web Applications 63

•Composition framework
The composition framework consists of reusable library of link class definitions. Two
activities related to this framework are defined: composition identification and
composition refinement.

•GUI framework
The GUI framework includes two activities: presentation and window identification
and mapping of classes and compositions to presentations.

 Fig. 3. Overview of EORM

2.6.2 O-O Hypermedia Design Method
In OOHDM[7], a hypermedia application is built in a four-step process supporting an
incremental or prototype process model. Each step focuses on a particular design
concern, and an object-oriented model is built. Figure 4 illustrates products and
mechanisms of each step in OOHDM. Detailed explanation is as follows.

•Domain Analysis
In this step a conceptual model of the application domain is built using well-known
object-oriented principled, augmented with some primitives such as of users and
tasks.

•Navigational Design
Here, OOHDM describes the navigational structure of hypermedia application in
terms of navigational contexts, which are induced from navigation classes such as
nodes, links, indices, and guided tours. Navigational contexts and classes take into
account the types of intended users and their tasks.

•Abstract Interface Design
The abstract interface model is built by defining perceptible objects in terms of
interface classes. Interface classes are defined as aggregations of primitive classes
and recursively of interface classes. Interface objects map to navigational objects,
providing a perceptible appearance. Interface behavior is declared by specifying how
to handle external and user-generated events and how communication takes place
between interface and navigational objects.

•Implementation
Implementation maps interface object to implementation objects and may involve
elaborated architectures (e. g., client-server), in which applications are clients to a
shared database server containing the conceptual objects.

64 H.-K. Kim, H.-S. Yang, and R.Y. Lee

3 A Component Based Web Application Development

3.1 Web Design Process

A Web application consists of pieces of information in the form of text, images, sound,
video and other programs. Each piece of information is called node. Nodes are
connected to each other by links. Links are associated with a small part of the node
called the anchor. When the user wants some information he/she activates the anchor
and the system follows the associated link to access and display the target node. To
design a Web application, we need to decide hoe to divide the information domain into
pieces, how the resulting pieces are to be linked, and how the user is to interact with the
system. Web application design process must include additional design steps on the
traditional approach. Navigational design is a typical design step used in Web design
process. Splitting process can be coordinated mainly in two ways, top-down approach
and bottom-up approach. It is important to differentiate a Web system from a Web
application. The former is an environment that facilitates the creation of the latter. A
data model for a Web system details its internal architecture but is of little value in
modeling Web applications. This is because describing the layout of a general-purpose
engine is quite different from modeling an application domain; a different kind data
model is needed for this purpose. In our case, CBWDM (Component Based Web
Design Methodology) provides a language for describing the information objects and
the navigation mechanisms in Web applications.
 Web application design model is a set of logical objects used to provide an
abstraction of a part of the real world for the Web applications and Internet. Data
models are necessary to express an application's design. Many models are presented
targeting Web applications and Web system. In this process, Web design
methodologies should consider the needs of user, designer and developer in the design
phases from informal user requirement to formal Web systems. The first stage of Web
application design process is about capturing navigational user requirement, which is
the origin of the various Web design models. The result of user requirements analysis
must be conceptualized and instantiated. Conceptualizing process is a bottom-up
approach for producing a generic structure from a set of examples. Conceptualizing is
necessary to bridge bottom-up and top-down approaches. Given a structure resulting
from conceptualizing, the design environment should help repopulate it with existing
information or instantiate it with new information. CBWDM architecture is divided
two main process as for component and with component based on a bottom-up
approach. CBWDM with component spans fundamental stages of SDLC, which range
over domain analysis, component engineering (Component Searching, Selection,
Development and execution) and navigational mapping of a domain and mapping the
result into target Web application system. The first Web design process on CBD step is
to identify the domain components and to develop the domain architecture as in figure
4. The domain component, which is different from the physical component that can be
deployed immediately during software development, is defined as a service central unit
package of platform independent logical level. ABCD CBD architecture is represented
out of the identified domain components in a concrete and analyzable format.

 A Study on Frameworks of Component Integration for Web Applications 65

Fig. 4. Summary of OOHDM Methodology

3.1.1 Identify Web Domain Component
The most important process of component-based software development is that of
extracting the component. Therefore, this process is also important for
component-based domain design. When creating web applications, it is possible to
allocate different granularity, which can be extracted from the requirement of the
system. Variable granularity of these components can be supplied through the web
Component that was extracted based on the service. So the web domain component is
extracted based on domain use case as in figure 5.

 Fig. 5. Web Design Process on CBD

The usecase is a description of set of sequences of actions that a system performs that
yield an observable result of value to an actor. We have identified web components and
layered on ABCD architecture as shown figure 7. These components such as can be
used for and with direction on CBD process.

3.1.2 Searching for Components
Typically, the application composer will start with a broad search using natural-
language keywords. The composer enters the search terms into the CBWDM, which in
turn sends a search command to all the repository servers it knows about. Search
commands are implemented as pieces of mobile code. A repository server executes the

66 H.-K. Kim, H.-S. Yang, and R.Y. Lee

mobile Code and allows it to search through all its stored components. The mobile code
then queries the self-description of the identified components in order to check them
against some associated search criteria. The default search command just checks the
search terms against a list of keywords provided by the semantic self-description of a
component. However, the repository architecture leaves the decision of how to search
to the client CBWDMs. A CBWDM could easily replace this basic search strategy with
a more complex one, for example one that makes use of natural language processing
features. All the management of meta-information, dependencies, and so on that is
typically done by a reuse repository is delegated to the components themselves, or
rather their self-description. When a component is found that matches the search
criteria, a part of the component is transferred to the client. CBWDM adds the
component to its set of available components, and uses the component self-description
to present information about the component to the composer.

3.1.3 Web Components Extraction
Often, the set of available components will be very large, since it is difficult to specify
search criteria in a sufficiently precise way. The application Composer uses the
Available Components View to browse through the available components, to look at
their properties, and to select the ones that are needed as in figure 8. CBWDM has a
window that displays a selection of relevant properties of the available components for
easy comparison. Among them are name, manufacturer, size, price, and number of
provides and requires ports. The numbers of ports allow an easy estimation of the
architectural complexity of the component.

 Fig. 6. Identifying Web Component with UML

Fig. 7. Identified Web Component

 A Study on Frameworks of Component Integration for Web Applications 67

For example, a component that has zero requires ports will be at the bottom of the
architecture because it does not depend on any other components. An alternate view of
the available components is sorted by the interfaces that the components implement,
making it easy to compare all components that are possible suppliers for a given data
type. However, since a component usually implements more than one interface, this
view is less compact.

3.1.4 Component Configuration
CBWDM has a design editor that allows the composer to connect components.
Components selected from a repository are represented in these diagrams by icons
provided in the self-description of the components. When the diagram is opened, all
selected components are displayed with their respective requires and provides ports.
Requires ports are depicted as hollow circles, provides ports as filled circles. Each port
is labeled with the name of the interface for which an implementation is required or pro
vided. The composer can drag the components and create directed connections in the
form of UML dependencies from requires ports to matching provides ports. Each
provides port can be used by any number of requires ports, but a requires port cannot
be connected to more than one provides port. A component Diagram gives an overview
of the architecture that is being built and makes it easy to see which requirements are
not yet fulfilled.

Fig. 8. Extracted Web Component

Each unfulfilled requirement corresponds to a requires port that is not connected to

any provides port. To conclude type configuration, the composer must specify the
main method of the application, i.e. the method with which execution is started. The
environment presents a list of all public methods that could be used as main methods,
and the composer chooses one of them.

3.1.5 Component Integration and Development
In an ideal situation, component interfaces would be formally specified, and a
CBWDM would perform formal reasoning to ensure the semantic compatibility of
component integration with their interfaces. However, such reasoning tools are still not
widely available or widely used by practitioners, and most commercial components do
not have formally specified interfaces. A global namespace of interfaces partly solves
the problem of how a CBWDM will ensure consistency between the semantics of a

68 H.-K. Kim, H.-S. Yang, and R.Y. Lee

provided component and the semantics required of the component. After the
components are extracted and configured, those web components are should be
integrated through anyhow. The figure 9 shows an example of components integration
that simply gets a web services from primitive web components such as user
authentication, DB connection and e-applications. CBWDM uses Visual Café for
instance-oriented configuration. Visual Café is a commercial Java development
environment that sup-ports visual connection and adaptation of Java Beans on an
in-stance basis. CBWDM uses Remote Method Invocation (RMI) to communicate with
a Visual Café plug-in, which automatically loads the components into the component
library of Visual Café, from where they can be dragged into Visual Cafés visual editor.

3.2 Execution

After the application has been configured, it can be executed. For testing, it can be
executed in the CBWDM environment; this allows an iterative build process of
alternating phases of configuring and executing as in figure 9. To make it possible to
run the application outside of CBWDM, the environment can generate a configuration
file that stores the names and URLs of the components that participate in this
application, and how they are configured.

Fig. 9. Web Component Integration

When an application is being executed and a component implementation needs to

instantiate a data type that is specified by one of its requires ports, it will query the
runtime environment for a new instance of that data type as in figure 10. After
instantiation, the component uses regular method calls to communicate with the other
one; the polymorphism of the programming language makes it possible for one object
to use another object without knowing the latter's precise type. The connection is
explicit, because no component ever knows which of the other components provides
the data type that it is using. At the same time it avoids most of the runtime overhead of
message assing or similar de-coupling strategies. An overhead occurs only when a data
type is being instantiated, not each time its instances are used.

 A Study on Frameworks of Component Integration for Web Applications 69

Fig. 10. Web Component Execution Environment

3.3 Component Evolution

When a component is marked as selected, the downloaded self-description can be
implemented in one of two ways to provide access to the implementation of the
component. In the usual case, it downloads a copy of the implementation and caches it
locally. Then, it subscribes with the repository for update notifications. When an
updated version of the component is published at the repository, the component is
notified and can update itself. The other possible strategy is service reuse. Analogous
to client-server application architecture, the downloaded part of the component
for-wards requests to the master copy of the component that is located at the repository.
Since the component is encapsulated, the difference between the two strategies is
transparent to the user of the component, and thus to CBWDM. This means that the
component can decide at runtime which strategy to use. For example, when the network
transfer rate is high enough, the most current data can be directly accessed on the
remote server. At times when the network is overloaded, the component can decide to
use the locally cached version. Both these strategies realize reuse by reference. In both
cases, a logical connection between the application using a component and the original
copy of the component is created in order to prevent the maintenance problems
associated with reuse.

4 Conclusion

Designing, developing and maintaining components for reuse is a very complex
process, which require not only for the component functionality and flexibility, but also
for matured development organization. In this paper, we focus on suggesting practices
for component development processes. This includes the model management strategy
and development and delivery of web component, adopted by an organization. In this
paper, we have motivated the need for a new generation of CBD environments to
support the web application. We identified important components for CBWDMs, and
we described a prototype environment called CBWDM that we are building to

70 H.-K. Kim, H.-S. Yang, and R.Y. Lee

implement these requirements and to provide a basis for further evaluation and study of
the role of environment technology based on component-based development. There are
several issues that remain to be resolved. Type-based adaptation does not exist yet in
our prototype.

We expect that the same methods of internal and external adaptation can be used in
varied forms for type-based adaptation. Integration with development environments is
another issue. It remains to be seen if tight integration of the CBWDM with a
commercial development environment is the optimal solution, or if an alternative
solution is needed. Updating of components still requires manual effort. For further
research we will put more effort to create an open and extendable architecture. We
also will address the standard issues for component based software and CBD process,
which covers component requirement analysis, component development, and
component certification.

Acknowledgments

This research was supported by the MIC(Ministry of Information and
Communication), Korea, under the ITRC(Information Technology Research Center)
support program supervised by the IITA(Institute of Information Technology
Assessment)

References

1. George T. Heineman and William T. Councill, Component Based Software Engineering,
Addison Wesley Publication Company, June, 2001.

2. Clemens Szyperski, Component Software: Beyond Object-Oriented Programming, January
2001, Addison-wesley.

3. Harvey M. Deitel, Paul J.Deitel, TemNieto and T.R.Nieto, e-Business & e-Commerce,
Prentice Hall, 2001.

4. Reash Trivedi, "Web Service Architecture Models," RCG IT, 2002. 4.
5. Michael Champion, "Web Services Architecture," at URL :

http://dev.w3.org/cvsweb/~checkout~/2002/ws/arch/ wsa/wd-wsa-arch.html ,
6. John D. Poole, "Model Driven Architecture: Vision, Standards and Emerging

Technologies," European Conference on Object-Oriented Programming,
 URL: http://www.omg.org/mda/mda_files/Model-Driven_Architecture.pdf

7. Kruchten, P.B., Rational Unified Process, The: An Introduction , Second Edition,
Addison-Wesley,2000 http://www.rational.com

8. Cheesman, J. and Daniels, J., UML Components: A Simple Process for Specifying
Component-Based Software, Addison-Wesley,2000

9. Atkinson, C., et al., “Component-Based Product Line Engineering with UML”, Addison-
Wesley, 2001 http://www.iese.fhg.de/KobrA/book/

10. I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process,
Addison-Wesley, 1999.

11. D. D’sousz and A. Wills, Objects, Components, and Frameworks with UML: The Catalysis
Approach, Addison-Wesley, 1998.

12. “Select Perspective,” White Paper, Princeton Softech, Jan., 10, 2000,
 http://www.pricetonsoftech.com/index.asp .

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 71 – 80, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Study on Metrics for Supporting the Software Process
Improvement Based on SPICE

Sun-Myung Hwang1 and Hye-Mee Kim2

1 Department of Computer Engineering Daejeon University, 96-3 Yongun-dong,
Dong-gu, Daejon 300-716, South Korea

sunhwang@dju.ac.kr
2 Department of Computer Engineering, Jeonju Technical College, 1070 Hyoja-dong 2-ga,

Wansan-gu, Jeonju 560-760, South Korea
hmkim@jtc.ac.kr

Abstract. Software Process Improvement (SPI) is the set of activities with which
an organization attempts to reach better performances on product cost,
time-to-market and product quality, by improving the software development
process. Changes are made to the process based on ‘best practices’: experiences
of other, not necessarily similar organizations. Within SPI methodologies there is
a focus on the software development process, because it is based on the
as-sumption that an improved development process positively impacts product
quality, productivity, product cost and time-to-market. This paper defines
stan-dard metrics for quantitative measurement of quality indicators of processes
through Software Process Assessment (SPA) based on SPICE. Through
accom-plishment of this, we are able to control and to measure SPI activity, and
pro-vide for a basis of quantitative S/W process management. The results of our
re-search will represent a circulatory architecture for SPI and support of the risk
management through the improvement activities and the Process Asset Library
with collected and measured data.

1 Introduction

Recently, there are various efforts to improve the quality of software, the
development capability, and of the organization through the Software Process
Improvement (SPI)[1]. That is, it is realize that fundamental problem of S/W industry
is absence of the capability of S/W process management and intend to maximize the
quality and productivity of software through the SPI[2][3]. SPI is the set of activities
with which an organization attempts to reach better performances on product cost,
time-to-market and Process based on ‘best practices’: experiences of other, not
necessarily similar organizations. Within SPI methodologies there is a focus on the
software development process, because it is based on the assumption that an
improved development process positively impacts product quality, productivity,
product cost and time-to-market.

To be able to improve software practices /products, organizations make their
implicit knowledge explicit according to models.

72 S.-M. Hwang and H.-M. Kim

This information will be useful for planning and projecting future behavior and
actions. Process models were created during 1989s to deal with these needs and
crystallized in international initiatives like SPICE(ISO/IEC 15504) or CMM. There are
some models of SPI/SPA that are: CMM, Canada BNR’s Trillium, Europe’s Bootstrap,
ISO 9000 and SPICE[4,5,9]. But, these models are not describe a concrete assessment
procedure and improvement one. ISO/IEC 15504 is the same, which has only the
definition of general standards and it’s guidance [6,8]. Therefore, it has been met with
many problems that for finding the solution of the organization itself that finding the
solution of the organization itself that has a plan of S/W process assessment and
improvement.
 This paper defines standard metrics for quantitative measurement of quality
indicators of processes based on SPICE. Through accomplishment of this, we are able
to control and to measure SPI activity, and provide for a basis of quantitative S/W
prc-ess management.

2 Software Process Improvement Methodologies

The four SPI methodologies that are most referred to in literature are: CMM, ISO
9000-3, SPICE and BOOTSTRAP. Those methodologies will be described in more
detail.

2.1 CMM

Based on best practices from industry, the Software Engineering Institute (SEI)
devel-oped the Capability Maturity Model (CMM). The model was originally
developed to assess the software development process of third party suppliers, of the
US Depart-ment of Defence; however, this model also helped those suppliers to
improve their software process through an evolutionary path, of five maturity levels
<Table1>, from ‘ad hoc and chaotic’ to ‘mature and disciplined’ management. As
organizations be-come more ‘mature’, risks are expected to decrease and productivity
and quality are expected to increase.

Each CMM maturity level contains a set of Key Process Areas (KPA’s) which
de-scribe the main capabilities for that level.

2.2 ISO 9000

An other well-known methodology for SPI is the ISO 9000 approach. The assumption
behind the ISO 9000 standards is that a well-managed organisation with a defined
engineering process is more likely to produce products that consistently meet the
purchaser’s requirements, within schedule and budget, than a poorly managed
organisation that lacks an engineering process. ISO 9001 describes ‘Quality
systems-model for quality assurance in design/development, production, installation
and servicing’.

ISO 9001 is a set of quality system requirement that consistes of twenty clauses that
represent requirements for quality assurance in design, development, production,

A Study on Metrics for Supporting the Software Process Improvement Based on SPICE 73

installation and serving, the defines which aspects of a quality system have to be
available within an organisation. Details on how these aspects should be implemented
and institutionalized are not provided by ISO 9001. As ISO 9001 was added
specifically for software-development: ‘Guidelines for the application of ISO 9001 to
the development, supply and maintenance of software’. ISO 9000-3 provides
guidelines for applying ISO 9001 to the specification, development, supply and
maintenance of software [ISO 9000-3]. The requirements for ISO 9000-3 certification
are divided over twenty requirements classes <Table 2>.
 Receiving ISO 9000-3 certification assures customers that in an audited company all
its processes and work instructions documented conform the ISO requirements, and
that these processes and work instructions are being followed on a continuous basis.
ISO certification does not give any guarantee for quality, it only indicates that the
procedures are used to a certain extent.

Table 1. The five levels and KPA’s of the CMM [4]

 Level Key Process (KPA)
1.Initial
The software process is characterized as ad

hoc, occasionally or chaotic. Few proc-esses
are defined, and success depends on
individual effort and heroics

2. Repeatable
Basis project-management processes are

established to track cost, schedule and
functionality. The necessary process
disci-pline is in place to repeat earlier
successes on projects with similar
applications.

•Requirements management (RM)
•Software project planning (SPP)
•Software project tracking & oversight
(SPTO)
•Software subcontract management (SSM)
•Software quality assurance (SQA)
•Software configuration management
(SCM)

3. Defined
The software process for both

manage-ment and engineering activities is
docu-mented, standardized, and integrated
into a standard software process for the
organisa-tion. All projects use an approved,
tailored version of the organization’s standard
software process for developing and
main-taining software.

•Organisation process focus (OPF)
•Organisation process definition (OPD)
•Training program (TP)
•Integrated software management (ISM)
•Software product engineering (SPE)
•Inter-group co-ordination (IC)
•Peer reviews

4. Managed
Detailed measurements of the software

process and product quality are
quantita-tively understood and controlled.

•Quantitative process management (QPM)
•Software quality management (SQM)

5. Optimising
Continuous process improvement is

en-abled by quantitative feedback from the
process and from piloting innovative ideas
and technologies.

•Defect prevention (DP)
•Technology change management (TQM)
•Process change management (PCM)

74 S.-M. Hwang and H.-M. Kim

Table 2. ISO 9000-3 Guideline classes [10]

Nr Guideline Classes
4.1 Management responsibilities
4.2 Quality system requirements
4.3 Contract review requirements
4.4 Product design requirements
4.5 Document and data control
4.6 Purchasing requirements
4.7 Customer-supplied products
4.8 Product identification and tracing
4.9 Process control requirements
4.10 Product inspection and testing
4.11 Control of inspection equipment
4.12 Inspection and test status of products
4.13 Control of non-conforming products
4.14 Corrective and preventive action
4.15 Handling, storage and delivery
4.16 Control of quality records
4.17 Internal quality audit requirements
4.18 Training requirements
4.19 Servicing requirements
4.20 Statistical techniques

2.3 BOOTSTRAP

The BOOTSTRAP method is the result of an European project under the auspices of
the European Strategic Programmer for Research in Information Technology
(ESPRIT). It provides an alternative for organizations that are interested in improving
their software development process and attaining ISO 9001 certification, as it combines
and enhances the methods provided by the CMM and the ISO 9000 quality standard.

The basis of the BOOTSTRAP methodology is established by CMM. Like the
CMM, an assessment is based on five maturity levels, but the BOOTSTRAP method
uses a different scale to measure an organisations’ or projects’ overall strengths and
weaknesses. The ISO 9000 quality standards (ISO 9001 and ISO 9000-3) are
incorpo-rated in the methodology because they provide guidelines for a company-wide
quality system. The CMM does not include such guidelines. Furthermore, many
European companies use ISO 9000 as a primary quality standard. BOOTSTRAP can be
used by organizations to determine readiness for ISO 9001 certification.

BOOTSTRAP distinguishes three areas that identify the maturity of an organisation:
technology, methodology and organisation. Methodology is sub-divided into a
life-cycle dependent, life-cycle independent and process related area, of which the
life-cycle independent are is further divided into management, support and
customer-supplier. For each are in this BOOTSTRAP tree, a number of ‘processes’ are
defined. Each process has a number of ‘key-practices’ that need to be addressed for
that process. Furthermore, each process has a ‘capability dimension’, which identifies
the current status of that process on a scale from 0 to 5. Unlike the CMM, quartiles

A Study on Metrics for Supporting the Software Process Improvement Based on SPICE 75

between these levels are distinguished, which make it possible to assess on organisation
on for example level 2.5, expressing that level 2 is established and that 50% of the level
3 capabilities are in place.

2.4 SPICE

SPICE (Software Process Improvement & Capability determination) is a major
inter-national initiative to develop a Standard for Software Process Assessment. ISO
15504 <Fig. 1> is used as z-dimensional architecture for software process capability
deter-mination. It is based on other popular approaches, mainly on BOOTSTRAP,
CMM and ISO 9001.

Fig. 1. ISO 15504 Architecture

 Changes with respect to the CMM are [7]:

• a broader scope: processes that are indirectly related to the software development
processes are also considered
• a different architecture: levels are distinguished in all Key Process Areas, whereas
specific Key Process Areas within the CMM are only of importance within a certain
level
• an integration of other SPI-models, such as ISO 9000. TicklT and Trillium

3 Design of S/W Process Metric

3.1 Definition of Basic Quality Metric

In order to maximize effect of QMS (Quality Management System), it is needed to
support that metrics for quantitative measurement of practice activities. Actually, in

76 S.-M. Hwang and H.-M. Kim

order to have level4 or more process level of SPICE or CMM, it should be constituted
quantitative process management and measured all practice activities.

We researched and analyzed case studies of metrics that manage a project and s/w
process at KOREA SI enterprises.

They have a little difference in terminology. But, if they are classified in semantic
side, there are S/W product size, development schedule and cost, MM(Man Month),
computer resource, change, risk, defect and so on. Through analyzing for these results,
we define basic quality metrics as <Table 3>.

Table 3. Basic quailty metrics

Metrics Name Formulas
Observation Ratio of planned
process

(# of process / planned process) * 100

Observation Ratio of process (Actual progress / planned progress) * 100
Observation Ratio of planned
MM

(# of Actual MM / planned MM) * 100

Observation Ratio of planned
budget

(Fulfilled budget/ planned budget) * 100(%)

Productivity per process

Analysis: requirement / Fulfilled MM
Design : # of design / Fulfilled MM
Implementation : output size
(FP/LOC)/ Fulfilled MM
Testing : # of test suit/ Fulfilled MM

Observation Ratio of size (Actual size / planned size) * 100(%)
Observation Ratio of computer
resources

(Actual computer resource / esthmated computer
resource) * 100(%)

Changed Ratio of Requirements (# of changed req. / #of planned req.) * 100(%)
Ratio of Risk occurrence (# of Actual Risk / # of planned req.) * 100(%)
Ratio deleted defect (# of deleted defect / # of fined defect) * 100(%)

3.2 Definition of Standard Metrics

In this paper, being based on BPs of 40 sub- processes in 5 categories on SPICE,
referencing from related metrics that are analyzed through mapping relation of CMM’s
KPAs with SPICE’s processes and above basic metrics, we define standard metrics of
SPICE’s processes as <Table 4>.
 Also, we introduce concrete definition document about standard metric as
<Table 5>. The structure items of it are metric name, metric ID(SM-[process
name]+[serial number(two-digit serial number)], criteria of the metric, which is
semantic same type with the basic metric, the SPICE process, reporting time of
measured metric, lower bound and upper bound of the measured values, which is
permissible scope for meaningful them, formulas for the metric, unit of the value,
information of measured value, appli-cation guidance of the metric, which is compose
with analysis method and explanation of the result.

A Study on Metrics for Supporting the Software Process Improvement Based on SPICE 77

Table 4. Standard metrics of SPICE’s processes

SUP.1 Ratio for documentation
(# of changed doc. / # of estimated
doc.)*100(%)

of changed request # of changed request record

Observation Ratio of C.M
(# of Actual QA Review / # of
estimated QA Review)*100(%) SUP.2

MM Ratio of Actual C.M
(Actual MM for C.M / estimated
MM for C.M)*100(%)

Ratio of Actual Q.A Review
(# of Actual QA Review / # of
estimated QA Review) *100(%)

Process M e t r i c s Formulas

Ratio of required supply days
(Actual supply days / estimated

supply days) *100(%)
.2

Ratio of Actual required cost
(Actual supply cost / estimated

supply cost) *100(%)

.3 Ratio of Actual Auditing MM for supplier
(Actual Auditing MM / estimated

Auditing MM)*100(%)

Changed Ratio of customer request
(# of Actual changed request / # of

customer request)*100(%)

CUS.1

.4
Evaluating MM of delivered product

(Average evaluation hour)*(# of
evaluating man) *(evaluated item)

CUS.2 Observation Ratio of Acceptance criterion
(Satisfied A.C / contracted

A.C)*100(%)

Correction Ratio for requirement
(Corrected requirements / acquired

requirement)*100(%)
CUS.3

MM for requirement correction
(Actual MM / estrmated

MM)*100(%)

Ratio of operational risk
(# of Actual Risk / # of estimated

Risk)*100(%)

MM for operational testing
(Actual MM / estimated

MM)*100(%)
CUS.4 .1

Handling Ratio of user request
(# of handled function / user

requests)*100(%)

System design productivity # of system design item / MM

Accord Ratio of sys.reg. analysis
(# of S/W requirement /# of S/W

req. in system require)*100(%)

Correction Ratio of customent reg
of corrected reg. / # of customer

reg.

.2

S/W requirement analysis productivity # of S/W R.A / MM

S/W design productivity # of S/W design / MM
.3

Accord Ratio of S/W reg. Analysis
(# of S/Wdesign / # of S/W

reg.)*100(%)

.4 S/W implementation productivity
S/W (product size (FP/LOC) /

MM)
.6 S/W testing productivity # of S/W test / MM

ENG.1

.7 Sys testing productivity # of sys. Testing / MM

implementation productivity
for changed Items

(Changed size (FP/LOC) / MM)
ENG.2

 Testing productivity for changed Items (chnanged Testing Items / MM)

SUP.3

78 S.-M. Hwang and H.-M. Kim

MM Ratio of Review meeting

Actual MM of QA Review Meeting /
estimated MM of QA R.M)

*100(%)

SUP.4
Edtermination Actual Ratio

for verification results

(# of determination actors for V.R /

of finded total problems in
V.R)*100(%)

SUP.5 Observation Ratio for validation results

(# of determination actions for V.R /
of finded total problem in V.R)

*100(%)

SUP.6 Observation Ratio for joint Review results
(# of determination actions for J.R /
of finded total problem in J.R)
*100(%)

SUP.7 Progress ratio Ratio for Audit process
(Actual Audit progress / estimated
Audit progress)*100(%)

SUP.8
Observation Ratio for problem

resolution results

(# of determination actions / # of
problem resolution) *100(%)

Table 5. Standard Metrics Definition –Example

Metrics Name Ratio of actual required supply days
Metric ID SM-CUS1201 Domain Schedule SPICE Process CUS.1
Reporting Time Plan - close Lower bound N/A Upper bound N/A
Formulas A/B*100 Unit %
Information of measured value
A Actual supply days
B Estimated supply days
Guidance for application

Analysis
Method

(Actual supply days / Estimated supply days)*100(%)
- This is measured for actual days to acquire by supplier against estimated supply days.
- Whenever it re-estimated, this analysis a trend of increase or decrease.

Chart A graph of broken line

Explanation
of the result

- 90 <= result <=110 : suitable estimation
- result > 110 : underestimation for the schedule. It is possible for cost to increase, so

through re-planning, it is needed demand of changing budget or additional fulfilling of
MM

- result < 90 : overestimation for the schedule. It is possible for cost to waste, so
through re-planning, it is needed demand of changing of superfluous budget or manpower.

4 Experiment

We analysis the degree of organization’s process improvement through the field
experiment using proposed process metrics. First, we selected measured values that
was obtained through real project and applied on proposed standard metrics and then
analyzed the degree of the process improvement using SPICE assessment method.
Referencing from the results of first assessment, we consulted to the organization about
SPICE assessment process, application guidance of our standard metrics for the process

A Study on Metrics for Supporting the Software Process Improvement Based on SPICE 79

improvement. Since then, through results of the second assessment, we wished to
comprehend whether it improve or not and the degree of the effect.

4.1 Background

For the adequacy of proposed metrics, we wished to get the example of real project data
that was comprehended all SPICE processes. It is impossible. And so, we referenced
with analysis results of real KSPICE(Korea SPICE) assessment[9], which was
assessment results of 19 OU’s 189 processes : ENG.(89), SUP.(62), MAN.(29) and
CUS.(9)

4.2 The Result of First Assessment

It makes the first assessment on the excluded state of our standard metric. That result is
SPICE level 1. The process profile is as <Table 6>.

Table 6. Process profile of the first assessment

Process PA1.1 PA2.1 PA2.2 PA3.1 PA3.2 PA4.1 PA4.2 PA5.1 PA5.2
ENG.1.2 F F L P N
ENG.1.3 F L L P P
MAN.2 F L L P N
SUP.2 F L L P P
SUP.3 F L L L N

Not Rated

4.3 The Result of Second Assessment

After the 1st assessment, we supplied the education and consulting for understanding of
proposed metrics and concepts of SPICE’s SPI. About six month later, second
assessment was operated in same OU and selected similar project to 1st in application
domain and scope. That result is SPICE level 2 except MAN.2 process. The process
profile of 2nd assessment is as <Table 7>

Table 7. Process profile of the second assessment

Process PA1.1 PA2.1 PA2.2 PA3.1 PA3.2 PA4.1 PA4.2 PA5.1 PA5.2
ENG.1.2 F F F L P
ENG.1.3 F F F L P
MAN.2 F F L P N
SUP.2 F F F L P
SUP.3 F F F L P

Not Rated

 For 1st and 2nd assessment, applying our metrics for one of collected project’s value,
that result shows as <Table 8> at only the ENG.1.2 process.

 Through the result of <Table 8>, we could be acquainted with increase of a little
process improvement and process capability applying our proposed metrics.

80 S.-M. Hwang and H.-M. Kim

Table 8. Applied results at ENG.1.2(%)

 Metrics

Classification

Accord ratio of
system analysis

Correction ratio
for customer req.

S/W requirement
 analysis productivity

 1st assessment 85.3 71.3 83
 2nd assessment 92.3 85.8 89

5 Conclusions

This paper defines standard metrics for quantitative measurement of quality indicators
of processes based on SPICE and then we show the effect of process improvement
through 1st and 2nd assessment that are applied with real data of the project. For the
purpose of obtaining of these result, we researched and analyzed case studies of related
metrics that manage a project and S/W processes at Korea SI enterprises and also
mapping relations between CMM that has been offered improvement roadmap and
already has been applied management metrics in the filed and SPICE. By means of
these, we could define a basic quality metrics and standard ones for each process based
on SPICE.

The results of our research in this paper will represent a circulatory architecture for
SPI and a support of the risk management through the improvement activities and the
Process Asset Library with collected and measured data.

References

[1] G .J. Kim, “Internal and external trends of SPI technology”, Software Engineering Review,
Vol.11, No.3, pp.61-73, 1998. 9

[2] ESI, "SPICE(ISO15504) Training", V.2.0, ESI, 1996
[3] Hwasik Kim, "Beyond ISO9000 : the movement for process improvement of Software",

Software Engineering Review, Vol.11, No.3, 1998
[4] M.C Paulk, B. Cutis, and M.B. Chrissis, "Capability Maturity Model for Software",

Version 1.1, CMU/SEI-93-TR-24, 1993
[5] Bell Canada, "Trillium-Model for Telecom product Development & Support Process

Capa-bility", Internet Edition, Release 3.0, 1994
[6] Part 3 : ISO/IEC TR 15504, "Part 3 : Performing an assessment", ISO/IEC JTC1/SC7 1998
[7] Sassenburg,H., Matser, G., Kazil, P., ‘Software Process Improvement: Why and when?’ (In

Dutch), Informatie, 38, July/August, 1996
[8] Part 7 : ISO/IEC TR 15504. "Part 7 : Guide for use in process improvement", ISO/IEC

JTC/SC7 1998
[9] C.Y Yoon, “Relation Analysis of Software Processes using SPICE Level”, M.Eng. thesis,

Daejeon University, 2003. 2
[10] Part 3 : ISO 9000-3, “Part 3: Quality Management and Quality Standards”, ISO 9001 1997

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 81 – 91, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Uniformly Handling Metadata Registries

Dongwon Jeong1,*, Young-Gab Kim2, Soo-Hyun Park3, and Doo-Kwon Baik2,*

1 Dept. of Informatics & Statistics, Kunsan National University,
San 68, Miryong-dong, Gunsan, Jeollabuk-do, 573-701, Korea

djeong@kunsan.ac.kr
2 Dept. of Computer Science & Engineering, Korea University,

1, 5-ka, Anam-dong, Sungbuk-gu, Seoul, 136-701, Korea
ygkim@software.korea.ac.kr

3 School of IT Business, Kookmin University,
861-1, Chongnung-dong, Sungbuk-ku, Seoul, 136-702, Korea

shpark21@kookmin.ac.kr

Abstract. This paper proposes a query language to consistently access metadata
registries. In current, many metadata registries have been built in various fields.
Unfortunately, there is no access method to access the metadata registries in a
standard manner. Thus many management systems have been developed in
various and different access methods to build and manage their metadata regis-
try. In this paper, we propose a metadata registry query language that allows us
to access consistently all metadata registries in a standardized manner. The
query language is an extension of the standard query language for the relational
databases SQL which is familiar to existing database managers. Consequently,
the proposed metadata registry query language reduces the development cost of
a metadata registry management system. And it also enables all metadata regis-
tries to be accessed in a consistent manner.

1 Introduction

ISO/IEC JTC 1 developed ISO/IEC 11179 to enhance interoperability of databases.
The main concept of this standard is the data element which is a set of attributes such
as identification, representation, and allowable value of data and is a minimal unit to
specify data. A metadata registry is the set of data elements and is one of the key
elements of ISO/IEC 11179: [1] [15]

Because of its advantages such interoperability and dynamic metadata manage-
ment, until now, many metadata registries in various fields have been built to effi-
ciently manage data. The representative examples of the metadata registries are as
follows:

 KISTI (Bibliographic metadata registry): [2]
 EPA (Environmental Data Registry): [4], [10]
 NHIK (Australian National Health Information Knowledgebase): [5], [11]
 U.S. ITS (U.S. Intelligent Transportation System): [6], [12]

* The Corresponding Author.

82 D. Jeong et al.

The built metadata registries are based on the standard, ISO/IEC 11179. Thus, there
are similar access patterns to handle the metadata registries. ISO/IEC 11179 provides
no standard metadata registry access method. Until now, no research on the standard
access method has been made. It causes several problems such as duplicate develop-
ments of the access method, metadata registry access in different manners, etc. Most
of all, even though metadata registries are created according to the standard, there is
no standard access method to consistently access them.

This paper proposes a metadata registry query languages as the standard access
method to solve the issues aforementioned. The metadata query language is an exten-
sion of SQL, the international standard query language.

To achieve this goal, we first analyzed and defined query patterns. The metadata
registry query language is designed based on the query patterns and extended from
SQL: [13], [14]. The query language is the metadata registry query language to access
the metadata registries in a standardized manner. Therefore, it reduces time and effort
for developing systems. It enables all metadata registries to be accessed consistently,
thus we can increase interoperability between metadata registry systems.

2 System Structure for Uniformly Handling MDRs

This section shows a system structure to uniformly handle various metadata registries.
The main goal of this paper is to define a SQL-like protocol for realizing interopera-
bility between metadata registries. To do this, we first analyzed query patterns that are
used to handle metadata registries. These patterns are defined as metadata registry
query operators.

2.1 Overall System Structure

Fig. 1 shows the overall system structure for implementing and supporting the uni-
form handling method. The system simply consists of three layers. The first layer is
UI Manager processing user interfacing. The UI Manager is composed of Result Man-
ager and Query Manger. The Query Manager provides the graphic user interface or
text-based interface to users. General users can use the graphic interface and obtain
results of their request. Sophisticated users such as database administrator and data-
base designers can use the text-based interface.

The second layer is MDR Query Processor which is the core component of the sys-
tem. The MDR Query Processor is almost similar to the query processor of the tradi-
tional relation database management systems. The MDR Query Processor has an
additional function to process the metadata registry query operators. Therefore, as
shown in Fig. 1, it consists of Non-MDR query processing module and MDR query
processor module. There are two alternatives to realize the MDR Query Processor.
The first is to perfectly integrate the metadata registry query operators into the exist-
ing query processor. The other alternative is to use the wrapping approach like the
Object-relational database model. This choice is better than the first in the implemen-
tation view. However, its processing performance is less than the first. This issue is
out of bound of this paper scope. So we leave it as a further study.

 Uniformly Handling Metadata Registries 83

The final layer includes many metadata registries. The metadata registry query op-
erators in the MDR Query Processor are used as an interface for the various metadata
registries.

UI Manager

Result Manager Query Manager

MDR Query Processor

MDR-1 MDR-2 MDR-2. . .

Non-MDR Query MDR Query

Fig. 1. Overall system structure. The system architecture for the metadata registry query proc-
essing is similar to the traditional relational database management system. But this system
additionally includes operators and corresponding operations to process the requests to search
information of the metadata registries.

2.2 Common Operations for Metadata Registry Querying

The basic operations for managing metadata registry are classified into data element
search, grouping element search, data element registration, registration status man-
agement, version management of data element, and so on. Metadata registries are
managed and extended by these operations.

The data element search is a function to retrieve a proper data element. A data ele-
ment has many attributes, so we can retrieve proper data elements using the attributes.
When we retrieve a data element, we use various search options for exact searching.
Therefore, various search operations can be used to find a data element. ISO/IEC
11179 has several logical group elements that can group data elements. It includes
data element concept, object class, concept domain, etc. This paper defined them as
group elements. The group element search is to retrieve them with a given search
condition.

The goal of the data element registration is to extend a metadata registry. In other
words, in case that there are no data elements, a new data element can be proposed by
users. After confirmation, the proposed data element can be registered into the meta-
data registry. The proposed data element must be filled in with the mandatory attrib-
utes according to ISO/IEC 11179. Hence, Data element registration has many detailed
operations.

84 D. Jeong et al.

The registration status management of data elements is an operation to change their
standardization level. There are six standardization levels: Submitted, Registered,
Qualified, Standard, Preferred standard, and Retired. Therefore, we must provide
operations for these access patterns.

There are many access patterns to create and manage the metadata registries. We
can define standardized access interfaces for consistent handling the metadata regis-
tries through analysis on the operation patterns. This paper showed the basic opera-
tions that are required managing the metadata registries.

This paper focuses the search operations. In the metadata registry management sys-
tems, the result of searching is mainly a set of data elements. As aforementioned, a
data element has many attributes to depict data. Hence, data elements can be retrieved
using the values of the attributes. All of the metadata registries are built according to
the standard specification, ISO/IEC 11179. Therefore, they have the same mandatory
attributes.

As a result, we can define search operation patterns for retrieving proper data ele-
ments. In general, most retrieval systems provide additional search options to retrieve
exact results. Thus, the search options can be added the search operations.

The analyzed operation patterns of the metadata registry are summarized as fol-
lows: Search operation of data elements by the mandatory attributes (Definition,
name, context, etc.); Data element search operation by data element's registration
status (Submitted, recorded, qualified, standard, preferred standard, and retired);
Group element search operations (Data element concept, object class, conceptual
domain, etc.); Data element search operations using group elements (This group ele-
ments are used as qualifiers to retrieve data elements. The final target of these opera-
tions is a set of data elements); Data element search options (Exact matching, partial
matching, starting with. These options can be expressed using the original SQL.
However, we added these options into the metadata registry operators to be used ex-
plicitly).

The group element search operations retrieve data element concepts or object
classes. In other hands, the data element search operations using the group elements
are to retrieve data elements.

Generally, most operations produce a set of data elements as the result of search
because the most important object is the data element in the metadata registries. If
anonymous metadata registry is built according to the standard specification, the op-
erations above are available to the management systems managing the metadata regis-
tries. In other words, all of the standard-based metadata registries produce correct
results of the search operation patterns. If we cannot get a result from a metadata
registry using the operations, it means that the metadata registry has no instance or
has not been built according to the standard. In case of the latter, the metadata registry
must be reconstructed or updated to follow the international standard.

2.3 Metadata Registry Query Operators

This paper first defines several conceptual operators for detailed query operators based
on the analysis results. The conceptual operator is named as abstract query operator and
includes DE_mandatory_attribute_name(), DE_registration_status(), DE_group_element(), and
group_element().

 Uniformly Handling Metadata Registries 85

The abstract operators are conceptual operators that generalize concrete query op-
erators. Thus, they can be materialized into concrete query operators. For example,
DE_mandatory_attribute_name() is the conceptual operator for concrete query opera-
tors that retrieve data elements using their mandatory attributes. Thus, this abstract
operator is materialized into concrete query operators such as DE_name(),
DE_definition(), DE_context(), and so on. The details of the abstract operators are
given in the next section.

These abstract operators are defined to conceptually cluster operations from the
analysis of metadata registry access patterns. In other words, they are not actual query
operators to be integrated into SQL3. Therefore, they must be detailed and defined as
concrete metadata registry query operators. This paper describes it in the next section.

A part of the defined concrete operators is shown in Table 1. Because the MDR
operators are extracted and defined based on the query operations provided from the
standard specification of ISO/IEC 11179, these operators can be used as the standard
query interface for handling metadata registries.

In Table 1, KW means keywords given by users and OPT means search options
such as partial matching, exact matching, starting with matching, and so on. RA and
DA respectively mean registration attribute and mandatory attributes of data elements
such as name, definition, context, etc.

Table 1. Metadata registry query operators. The operators in this table are used for writing
queries.

Metadata registry query operators Descriptions

DE_name(KW, OPT)
, DE_definition((KW, OPT)
, DE_context(KW, OPT)
, . . . , DE_reg_orgnization(KW, OPT)

Operators to search data elements using the at-
tributes that are corresponding to mandatory
fields of every data element.
KW: Keyword given by an user; OPT: Searching
options such as partial matching, exact matching,
etc.

DE_status(RA, DA, KW, OPT)
, DE_status(RA)
, DE_status_submitted(DA, KW, OPT)
, . . . ,DE_status_retired(DA, KW, OPT)

Operators to find data elements using the statuses
of data elements.
RA: Registration attributes; DA: Mandatory
attribute of data elements.

DE_object_class(KW, OPT)
, DE_conceptual_domain(KW, OPT)
, . . . , DE_concept(KW, OPT)

Operators to find data element using the key
components such as Object Class, Conceptual
Domain, Element Concept, etc.

object_class(KW, OPT)
, conceptual_domain(KW, OPT)
, . . . , element_concept(KW, OPT)

Operators to search key components.
The search target is not a data element set.

3 Metadata Registry Query Language and Evaluation

This section describes a part of the defined metadata registry query language. Then
some evaluation results are shown.

86 D. Jeong et al.

3.1 MDR Query Language

Now SQL has been using as a standard query language for relational databases and so
it is familiar to many database users. Therefore, existing database users can easily use
the metadata registry query language because our approach is to extend and integrated
the metadata registry query operators into SQL. The following BNF description
shows a partial metadata registry query language.

<extended query specification>
::= SELECT <extended attribute list>
FROM <extended relation list>
WHERE <extended attribute qualification>;
<extended attribute list>
::= <attribute list>|<MDR attribute list>|<MDR opera-
tor>;
<extended relation list>
::= [COMMA]<general relation list>|<MDR relation
list>[<extend attribute list>];
<extended attribute qualification>
::= <general qualification>|<MDR qualification>;
<MDR qualification>
::= [<boolean term>]<MDR operator>[<extend attribute
qualification>];
<MDR operator>
::= <DE mandatory attribute name> | <DE registration
status> | DE_STATUS
L_PAREN<MDR param list>R_PAREN;
<DE mandatory attribute name>
::= NAME | DEFINITION | … | ORGANIZATION;
<DE registration status>
::= DE_STATUS_SUBMITTED | DE_STATUS_RECORDED
| DE_STATUS_QUALIFIED | DE_STATUS_STANDARD
| DE_STATUS_PREFERRED | DE_STATUS_RETIRED;
<MDR relation list>
::= DATA_ELEMENT | DATA_ELEMENT_CONCEPT | … |
OBJECT_CLASS;

The metadata registry query language is an extension of SQL to provide a consis-

tent access interface for metadata registries. Before extending SQL, we first defined a
standardized interface of table names and their attribute names used in metadata regis-
tries. The interface means a set of predefined and promised table names and attribute
names that can be validly used in all metadata registries according to ISO/IEC 11179.
Therefore, the interface allows metadata registry query statements to be simplified.

Most of all, we can verify the built metadata registries are valid or not. In addition,
it improves interoperability between metadata registries that have been built inde-
pendently and remotely.

3.2 Comparative Evaluations

The defined MDR query language allows the standardized and consistent access
method for the metadata registries. It is based on the standard query language SQL.

 Uniformly Handling Metadata Registries 87

Therefore, most database users are familiar to and utilize it for access metadata regis-
tries. The mechanism for sharing and exchanging between metadata registries is sim-
pler than other approaches because of its standardized access method.

The previous metadata registry management systems use different access methods.
It causes several problems such as high cost for achieving interoperability, compli-
cated mechanism for exchanging and sharing, and many query statements writing for
one request.

Fig. 2 illustrated the processing step of the previous approaches. In Fig. 2, there are
two metadata registries, and they have respectively different data schemas for main-
taining the same information. In other words, MDR-1 is designed with the following
structure: data_element_table includes all of the data elements; de_name is a field
name of the table data_element_table; status field is also included in the same table.
MDR2 has a different schema structure as follows: table1 holds name and status field,
reg_status is in table2. table1 and table use name as join key (Foreign key constraint).

Therefore, the queries reflecting each MDR structure are required to process the
given query because the two MDRs have different metadata registry structure and
also there is no consistent access interface between them. If the number of metadata
registries be N, then the previous approach requires N-query statements. Conse-
quently, the query modeling cost, distributed query process cost, preprocessing cost,
and complexity of exchanging mechanism exponentially increase.

Retrieve name of all data elements where
registration status is ‘RECORDED’

SELECT de_name
FROM data_element_table
WHERE status = ‘RECORDED’

SELECT table1.name
FROM table1, table2
WHERE table1.name=table2.name
AND table2.reg_status = ‘RECORDED’

MDR-1

status . . .
… …
…

de_name
…
… …

data_element_table

MDR-2

name
…
…

description
…
…

. . .
…
…

table1

name
…
…

reg_status
…
…

. . .
…
…

table2

<Original query: User request>

<Query for MDR-1> <Query for MDR-2>
Q

ue
ry

 P
ro

ce
ss

in
g

M
D

R
 L

ay
er

Fig. 2. Query processing steps in the existing approaches

Fig. 3 shows the MDR query language-based approach. In our approach, only one
query statement is written to get the response because the defined query language
provides the standard interface for accessing metadata registries. It has many advan-
tages in against the previous access methods as follows: Ease to share and exchange
metadata; Decrease of development cost; Observance of the standard specification.

88 D. Jeong et al.

In addition, the MDR query language is an extension of SQL, which is the interna-
tional standard for query language of databases. Most of the database handlers are
familiar to SQL. Therefore, it provides high familiarity.

Retrieve name of all data elements where
registration status is ‘RECORDED’

SELECT DE_status (RECORDED)
FROM data_element

MDR-1

status . . .
… …
…

de_name
…
… …

data_element_table

MDR-2

name
…
…

description
…
…

. . .
…
…

table1
name

…
…

reg_status
…
…

. . .
…
…

table2

<Original query: User request>

<Just One Query Statement>

Q
ue

ry
 P

ro
ce

ss
in

g
M

D
R

 L
ay

er

Fig. 3. The metadata registry query language-based approach. In case of our approach, the only
one query statement is written to accomplish the request.

In this paper, we show simple simulation results to help users’ understanding about
the proposed language’s advantages intuitively. According to the examples in Fig. 2
and Fig. 3, the calculation model is as follows:

Calculation model ρ = (NM, CM, CR),
 where

NM: The number of metadata registries
CM: Average cost for query writing according to the given metadata

registries
CR: Time(cost) to make the final result from several query results ob-

tained from each metadata registry.

For simulation, several factors must be defined. In this simulation model, the number
of the metadata registries is the most important factor. Also, the sub-query writing
time depend on each metadata registry schema structure. However, in this paper, we
assume the writing time is uniform. The time to generate the final result with several
sub-query results is one of the key factors. We assume that one temp final result gen-
erating time from two sub-query results is uniform.

With the calculation model, we can get the simulation result in Fig. 4. The variable
factor is the number of metadata registries and we use a value set {2, 6, 10} for the
simulation. The simulation result value is presented by the unit of relative cost value.
In this figure, let the results of previous approach and proposed approach are respec-
tively Rpre and Rpro. The performance ratio between them is Rpre and Rpro = 1: 1.83.

 Uniformly Handling Metadata Registries 89

In the calculation model has some assumptions. For example, we assumed the final
result generating time is uniform. Actually, the generating cost of the previous ap-
proach is higher than the proposed approach, because the previous approach must
match the corresponding fields to the final field. Therefore, the previous approach’s
generating time is higher. That is, if the generating time of the proposed approach is c,
then the generating time of the previous approach is c or more.

2 6 10

2

4

6

8

10

12

14

16

18

20

4 8 12

: The previous approach

: The proposed approach

of metadata registries

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(c

os
t)

Fig. 4. The evaluation (simulation) results. This figure respectively illustrates the simulation
results of the proposed approach and the previous approach. As the query processing time
(cost), a relative cost value is used.

4 Conclusion

The international standard ISO/IEC 11179 provides many advantages such as the
interoperability of data, dynamic metadata management, standardized metadata man-
agement process supporting, etc. Its key components include the data element and the
metadata registry which is the set of data elements. Owing to its merits, there are
many metadata registries which have been built for various application fields.

The application field contains the environmental information field, bibliographic
information field, e-business application, etc. To handle the metadata registries for
these application fields, the institutes and organizations has made the management
system respectively. However, the management systems provide different metadata
registry structures each other in the database level and unique access methods for their
registry. The ISO/IEC 11179 standard is the international standard and so the meta-
data registry structures described in its specifications. It means it is possible the same
operations to access them. However, there is no standard method to uniformly handle
the metadata registries. It causes the heterogeneity between the access methods of the
existing metadata registry management systems. Also, the interoperability between
them, i.e., the exchanging and sharing of metadata has difficulties.

90 D. Jeong et al.

The metadata registry is a kind of database instances and it has the standardized
structures. This is a clue to resolve the issues. In this paper, we supposed a metadata
registry query language to uniformly handle and manage every metadata registry in a
standard manner like SQL. The metadata registry query language is an extension of
the international standard query language, SQL. To achieve this goal, we analyzed
basic operations that are required to access the metadata registries. Then we defined
the metadata registry operators based on the analysis result. Finally, these metadata
registry query operators were integrated into SQL.

The metadata registry query language proposed in this paper is the SQL-like query
language, i.e., an extension of SQL. Thus, exiting database (especially, relational
database) users can easily accept and use this metadata registry query language. It can
be used as the standard protocol for all metadata registry management systems. It
means that the metadata registry query language can be used as a protocol to ex-
change and share data elements between distributed metadata registries built inde-
pendently.

The metadata registry query language provides the standard names for essential
composing elements that should be defined to create a metadata registry. In other
words, we can identify and check whether any metadata registry follows ISO/IEC
11179 specifications or not. Therefore, it encourages all metadata registries to be
created following the standard specifications.

In further study, this paper focused on defining only metadata registry query lan-
guage for searching. Therefore, various query operators for creation, delete, and up-
date should be defined and integrated into the proposed query language. Also, its
preference must be shown through experiments considering human factors.

References

1. ISO/IEC JTC 1/SC 32, ISO/IEC 11179: Specification and standardization of data elements
Part 1~6. ISO/IEC JTC 1 (2003)

2. Korea Institute of Science and Technology Information, A study on the development of
standardization and management model for science and technology information. Research
Report (2002)

3. Electronics and Telecommunication Research Institute, Research on the Registration and
Search System of Component, Research Report (2000)

4. Environmental Protection Agency, Environmental Data Registry, http://www.epa.gov/edr/.
(2004)

5. Australian Institute of Health and Welfare, Australian National Health Information Know-
ledgebase, http://www.aihw.gov.au/ (2003)

6. U.S. Transportation System, http://www.dot.gov/. U.S. Department of Transportation
(2003)

7. Egenhofer, M., Spatial SQL: A query and presentation language. IEEE Transactions on
Knowledge and Data Engineering (1994)

8. Pissinou, N., Snodgrass, R., et al., Towards an infrastructure for temporal databases: Re-
port of an invitational arpa/nsf workshop. In SIGMOD Record (1994)

9. ISO/IEC JTC 1/SC 32, ISO/IEC 13249: Information technology - Database languages -
SQL Multimedia and Application Packages, ISO/IEC JTC 1 (2003)

10. Environmental Protection Agency, Data Standards Publications and Guidances (2003)

 Uniformly Handling Metadata Registries 91

11. Australian National Health Data Committee, National Health Data Dictionary (2003)
12. ITS Architecture Development Team, ITS Logical Architecture- Volume I, Volume II:

Process Specifications. Volume III: Data Dictionary (2003)
13. ISO/IEC JTC 1/SC 32, ISO/IEC 9075: Database Language SQL3 Part 1~10. ISO/IEC JTC

1 (1999)
14. Lee, J.-Y., Integrating Spatial and Temporal Relationship Operators into SQL3 for Histori-

cal Data Management. Journal of Electronics and Telecommunication Research Institute,
Vol. 24, No. 3. Electronics and Tele-communications Research Institute (2002) 226-238

15. Jeong, D., Park, S.-Y., Baik, D.-K, A Practical Approach: Localization-based Global
Metadata Registry for Progressive Data Integration. Journal of Information & Knowledge
Management, Vol. 2, No. 4. World Scientific (2003) 391-402

Network Layer XML Routing Using Lazy DFA

Jie Dai, Kexiao Liao, and Gongzhu Hu

Department of Computer Science,
Central Michigan University,

Mount Pleasant, MI 48859, USA
{dai1j, liao1k, hu1g}@cmich.edu

Abstract. XML routers are devices that deliver the requested data from
XML data streams to the destinations. Several XML stream process
methodologies have been proposed and developed in recent years, but
there are still many issues on XML routing at the network layer remain
to be studied. In this paper we present a design of such a XML router at
the network layer. An implementation of a prototype of the XML Router
is also described that uses lazy Deterministic Finite Automata (DFA)
to process XML streams from the network in real time. Preliminary
experiments showed that our XML router has the potential of delivering
requested data efficiently both in time and space.

1 Introduction

A new class of data-intensive applications has become widely recognized in recent
years: applications in which the data is modeled best not as persistent relations
but rather as transient data streams [4]. In the data stream model, individual
data items arrive continuously in multiple, rapid, time-varying, possibly unpre-
dictable and unbounded streams. It is not feasible to simply load the arriving
data into a traditional database management system (DBMS) and operate on
it there. Traditional DBMS’s are not designed for rapid and continuous load-
ing of individual data items, and they do not directly support the continuous
queries [14] that are typical for data stream applications. New Data streams
differ from the conventional stored relation model in several ways:

– The data elements in the stream arrive online.
– The system has no control over the order in which data elements arrive to

be processed.
– Data streams are potentially unbounded in size.
– Once an element from a data stream has been processed, it is discarded

or archived - it cannot be retrieved easily unless it is explicitly stored in
memory, which typically is small relative to the size of the data streams.

Queries over continuous data streams have much in common with queries in a
traditional database management system. However, there are several important
distinctions peculiar to the XML data stream model. One important distinction
is between one-time queries and continuous queries. One-time queries (including

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 92–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Network Layer XML Routing Using Lazy DFA 93

traditional DBMS queries) are queries that are evaluated once over a point-in-
time snapshot of the data set, with the answer returned to the user. Continuous
queries, on the other hand, are evaluated continuously as data streams continue
to arrive. Answers to a continuous query may be stored and updated as new
data arrives, or they may be produced as data streams themselves.

Research has been conducted and reported in the literature on stream pro-
cessing and XML routing. Most XML routers use Deterministic Finite Automata
(DFA), which is the most efficient means to process XPath expressions. But
DFAs were considered impossible to use when the number of XPath expressions
is large, because the size of the DFA in the memory grows exponentially with
that number, if all the states in the DFA are constructed before processing the
XML stream (called eager DFA) [11]. On the contrary, lazy DFA is constructed
on demand at run-time, starting with a single initial state. It was approved that
with lazy DFA there is an upper bound on their size that is independent of the
number and shape of XPath expressions [10]. This upper bound only depends
on certain characteristics of the XML stream, such as the data guide [9] or the
graph schema [1], [5], they are usually small in many applications.

The XML Toolkit (XMLTK) [3] developed by a research team at the Uni-
versity of Washington is a toolkit for highly scalable XML data processing. It
employs the lazy DFA approach and their experiments showed the performance
of lazy DFA achieving constant throughput independent of the number of XPath
expressions. All the tools and libraries provided in XMLTK, however, only sup-
port processing XML data from the local file.

In order to accomplish XML router functionalities, we have designed an XML
router that extends the current XMLTK and makes it capable to handle the data
from the network on the fly in real time. The distinctive features of our XML
router include:

– A pipeline method to process the XML packets to speed up the overall
processing time.

– Sending the XML packets to registered XML routers in parallel at the end
of the pipeline. This function guarantees that the subscribed XML data can
be delivered to their destinations without waiting for other XML routers to
finish their job.

We tested the preliminary prototype of our router on XML data streams of
about 140 MB in size. The experiments showed that the routing system correctly
filtered the desired information extracted from the XML stream and delivered. It
also showed that the memory usage for each router is very minimal (less than 2%
of total memory available), indicating that the use of lazy DFA is very feasible
for processing XPath queries to avoid exponential growth of the DFA states.

2 Related Work

There are several methods used to process XML streams. They may process
large numbers of XPath expressions (e.g. 10,000 to 1,000,000) on continuous

94 J. Dai, K. Liao, and G. Hu

XML streams at network speed [10]. In this section we briefly describe four of
these methods that are well known in this research area.

2.1 Content-Based XML Routing

Alex Snoeren and his colleagues at MIT proposed the content-based XML rout-
ing [13], which is an approach for reliably multicasting time-critical data to het-
erogeneous clients over mesh-based overlay networks. The data streams are com-
prised of a sequence of XML packets (application packets above TCP/IP level)
and forwarded by application-level XML routers. XML routers perform content-
based routing of individual XML packets to other routers or clients based upon
queries that describe the information needs of down-stream nodes. Their routers
use the Diversity Control Protocol (DCP) for router-to-router and router-to-
client communication. DCP reassembles a received stream of packets from one
or more senders using the first copy of a packet to arrive from any sender. When
each node is connected to n parents, the resulting network is resilient to (n-1)
router or independent link failures without repair. Associated mesh algorithms
permit the system to recover to (n-1) resilience after node and/or link failure.
They had deployed a distributed network of XML routers that streams real-time
air traffic control data. Their experimental results show multiple sender improve
reliability and latency when compared to tree-based networks.

2.2 Selective Dissemination of Information (SDI)

M. Altinel & M. Franklin [2] developed several index organizations and search
algorithms for performing efficient filtering of XML documents for large-scale
information dissemination systems. The applications involve timely distribution
of data to a large set of customers; they include stock and sports tickers, traf-
fic information systems, electronic personalized newspapers, and entertainment
delivery. The execution model for these applications is based on continuously col-
lecting new data items from underlying data sources, filtering them against user
profiles (i.e., user interests) and finally, delivering relevant data to interested
users. In order to effectively target the right information to the right people,
SDI systems rely upon user profiles. They developed a document filtering sys-
tem, named XFilter, that provides highly efficient matching of XML documents
to large numbers of user profiles. In XFilter, user interests are represented as
queries using the XPath language [7]. The XFilter engine uses a sophisticated
index structure and a modified Finite State Machine (FSM) approach to quickly
locate and examine relevant profiles.

2.3 Continuous Queries

In this approach, J. Chen, D. DeWitt use NiagaraCQ systems [6] to handle
millions of continuous queries over the Internet. NiagaraCQ addresses the scal-
ability of such continuous queries by grouping continuous queries based on the

Network Layer XML Routing Using Lazy DFA 95

observation that many web queries share similar structures. Grouped queries
can share the common computation, tend to fit in memory and can reduce the
I/O cost significantly. Furthermore, grouping on selection predicates can elimi-
nate a large number of unnecessary query invocations. Their grouping technique
is distinguished from previous group optimization approaches in the following
ways. First, they use an incremental group optimization strategy with dynamic
re-grouping. New queries are added to existing query groups, without having
to regroup already installed queries. Second, they use a query-split scheme that
requires minimal changes to general-purpose query engine. Third, NiagaraCQ
groups both change-based and timer-based queries in a uniform way. To ensure
that NiagaraCQ is scalable, they have also employed other techniques including
incremental evaluation of continuous queries, use of both pull and push models
for detecting heterogeneous data source changes, and memory caching.

2.4 Processing of Scientific Data in Large XML Files

Recent technical advances in molecular biology have allowed the generation of
an enormous volume of data, which cannot be dealt with by traditional printed
publications [12]. A form of electronic data publishing has been developed to
make data available in a world-wide network-accessible database, while methods
and conclusions continue to be published in traditional publications. Databases
such as GenBank and EMBL data library serve as repositories for DNA sequence
data, the first and largest component of the database is the corpus of research
papers that are stored as markup text using the Standard Generalized Markup
Language. Storing the text in markup form permits the system to display the
paper as it would be seen in published form. This is especially important in
biology where typesetting details (such as font changes) convey semantic infor-
mation. The other main component of the database is the biological knowledge
base. This consists of a schema, a lexicon and annotations of papers.

Although the above methods can process large numbers of XPath expressions
on continuous XML streams at network speed, all of them face the same memory
usage problem when the XPath expression become more and more complex.

2.5 XML Toolkit

XMLTK, a toolkit for highly scalable XML data processing, is developed by
a research team at University of Washington [3]. The toolkit has two compo-
nents. The first is a collection of stand-alone tools that perform simple XML
transformations (sorting, aggregation, nesting, un-nesting, etc.). The second is
a highly scalable XPath processor for XML streams. There are two important
technical contributions in the toolkit: a highly scalable XML stream processor,
and an XML stream index. The XML stream processor achieves a sustained
throughput of about 5.6MB/s and scales up to large numbers of XPath expres-
sions (up to 1,000,000 in the experiments). The processor transforms all XPath
expressions into a single deterministic automaton. It was proved theoretically
in [10] that the number of states in the automaton remains relatively small. As a

96 J. Dai, K. Liao, and G. Hu

common library for these commands, XML Toolkit has implemented two novel
technologies to realize a high-throughput XML data processing:

– Lazy DFA (deterministic finite automaton that is constructed at run-time)
based on XPath processor.

– SIX (streaming index for XML data) for XML parser.

Te XML Toolkit is comprised from two fundamental libraries (XML TSAX parser
and XPath processor) and a collection of simple XML processing commands built
upon those libraries.

3 Lazy DFA

We briefly describe Lazy DFA in this section for this paper to be self-contained.
Lazy DFA was proposed in [10] and used in the XML Toolkit for processing
XML queries. A collection of XPath expression queries can be converted into a
query tree, for which a deterministic finite automaton (DFA) can be built.

A query tree may contain a large number of XPath expressions that can
be converted into a non-deterministic finite automaton (NFA) that is then con-
verted to a deterministic finite automaton (DFA). The basic techniques of the
conversions can be found in many textbooks. One of the issues that is important
to XML routing is the size of the DFA that is constructed, meaning the number
of states in the DFA. If the DFA is built based on the query tree Q, the number
of states in the DFA Ad is propotional to the size of Q.

If the DFA is constrcuted from the query tree in advance, it is called an
eager DFA that in general has a large number of states when the number of
XPath expressions in the query tree is large, and hance requires large amount
of memory that may not be feasible. To overcome this problem, lazy DFA was
introduced [10] that is constructed at run time, on demand. It starts with a
single initial state. Whenever a transition is to be made into a missing state, the
state is computed and added to the DFA, hoping that only a small portion of
the DFA is ever needed to be built.

4 System Design

The goal of our work is to extend XML Toolkit with two basic routing function-
alities: network interfacing and XML package forwarding. These functionalities
are provided through a group of components which can be easily used by XML-
based application developers to flexibly construct their own filters or routers and
integrate them into their applications. With the components, developers can add
and delete XPath queries, process data streams from multiple destinations. We
use the the XPath processing libraries in the XMLTK to process XML stream
from the network against user predefined continous queries. Fig. 1 shows the
overall architecture of the XML routing system.

The system consists of seven components: Input, Pipe In, XPath Prosessor,
Pipe Out, Output, Filter and Query Manager. The XML data flows like this:

Network Layer XML Routing Using Lazy DFA 97

XML packets from network are received by the Input and transferred to the
XPath Processor through the Pipe In. After being processed by the XPath Pro-
cessor, the matched data are directed to proper destinations (local or network
applicaitons) through the Pipe out and the Output. The Pipe In, XPath Pro-
cessor and Pipe Out are closely related and managed by a component, called
Filter, to process XML data stream from a single data source. The Query Man-
ager manages user’s queries, such as adding to and removing the queries from
the system. In a Filter, the association between XPath Processor and the Pipe

Input

�
Pipe In

�

XPath Processor

�
Pipe Out

�
Output

Query Manager

1

n�

1

n

n

1

n

1

1n

1n

Filter

Association

� Dynamic Creation/Deletion

� XML Data Flow

Fig. 1. Architecture of the XML Router.

In or the Pipe Out is n-to-1, meaning that each Filter may link more than one
XPath Processor with a Pipe In and a Pipe Out. Multiple XPath Processors
allow the Filter to process XML data stream against multiple XPath queries
in parallel. The number of XPath Processors in one Filter is determined by
the number of queries made for a single application data stream through Query
Manager. In a router, the association between Input and Filter is 1-to-n, and
so is between Output and Filter. This allows developers to flexibly construct an
XML router that can handle data streams from more than one application, and

98 J. Dai, K. Liao, and G. Hu

forward searched results to multiple destinations. Only one Query Manager is
needed. It maintains all queries made by a user. Its association with Filter is
1-to-n, as queries may be for different applicaiton data streams. At the present
time, the Query Manager and Output have not been fully implemented. We used
Unix pipe is out implementation.

4.1 Input

The Input component receives XML data streams in the form of UDP pack-
ets through sockets. Each UDP packet contains one XML packet, which is a
fragement (1024 bytes) of an XML document. The 1024-byte size is an empir-
ical value for the best transmission effect with UDP. Therefore, a data stream
received by Input from a single application is comprised of a sequence of XML
packets of sequentially sent XML documents from that applicaiton. When the
Input receives packets from multiple applications, the data stream received is
an interlaced XML packets sent from distinct applicaitons. The Input is able
to distinguish which XML packet is from which applicaiton because each ap-
plicaiton associates a port number to each UDP packet that contains an XML
packet. This association is applied by the applicaiton before transmitting the
UDP packet and is taken care of by the socket communicaiton libraries provided
by an operating system. The port number used by a data source to send its XML
data becomes the data source identifer in our system.

The Input uses distinct Filters to separate the handling of different appli-
caiton data streams. After the Input has identified an XML packet from an ap-
plicaiton, it sends the packet to Pipe In of the corresponding Filter. If a packet
was from a new applicaiton, a Filter is dynamically created by the Input before
the packet can be transferred. The Filter then creats a Pipe In, a Pipe Out and
a number of XPath Processors to process the received XML packet. In order
to remember which applicaiton is tied to which Filter and send packets to the
correct Pipe In, the Input maintains a table, called Input Table, shown below, to
store the needed information. Each record in the table contains three field: the
corresponding port number used by an applicaiton, the identifier of the Filter
used to process the XML data, and the identifier of the Pipe In in the Filter.
By checking the table, Input can easily find out whether an applicaiton has al-
ready registered, and where to send a packet to process. When an applicaiton
has stopped communicating with the Input, the tied Filter is deleted and the
corresponding record is removed from the Input Table.

Port Number Filter ID Pipe In ID

5204 F1 P1

...

Network Layer XML Routing Using Lazy DFA 99

4.2 Filter

The Filter component manages a Pipe In, one or more XPath Processors, and a
Pipe Out for processing XML data stream from a single application. It performs
the following tasks:

(1) Create a Pipe In object and a Pipe Out object when it is invoked by Input.
(2) Create one or more XPath Processors based on the number of predefined

continuous queries made throught the Query Manager.
(3) Control the distribution of XML packets from Pipe In to the corresponding

XPath Processor.

It is trivial to do the job (1). For the job (2), the Filter needs to consult
a table maintained by the Query Manager in order to know how many XPath
Processors need to be created. If related queries have been found in the table,
the corresponding XPath Processors are created. Otherwise it sends a signal to
the Input informing it to forward a packet to a default Filter. This default Filter
does not contain any XPath Processors but a Pipe In and a Pipe Out. It is
designed for forwarding any XML packets that are not specified to be checked
by a router. This provides the flexibility to distribute disjoint filtering jobs to
separate routers abd cascade them if needed.

While creating the XPath Processors, the Filter establishes a table, called
Filter Table, which contains information about all XPath Processors created.
Each record in the table contains a Processor ID, the associated XPath query
string, and the status. The first two fields are copied from the table maintained by
the Query Manager. The Status field indicates if the processor is doing patterm
matching for a packet or for accepting a new packet, initally set to be Free when
created. In the Filter, the Pipe In broadcasts an XML packet to all tied XPath

XPath Processor ID Xpath Query String Status

P1 Busy

.... Free

Processors. Different XPath Processors, however, may need different amount of
time to check the same packet, we need a control to disallow the Pipe In to emit
an XML packet until all the XPath Processors are free. The Filter achieves this
by checking the Filter Table. If the status of all processors is Free, it sends a
’ready’ signal to the Pipe In to let it emit a packet. It is required that each
XPath Processor send the Filter a ’busy’ signal when it has received an XML
packet for processing and a ’ready’ signal when it is done with the packet. When
the Filter has received these signals, it sets or resets the Status field. Although
the speed of a pipe may slows down a bit for synchronization, it is still much
faster than sending a packet to different processors sequentially.

100 J. Dai, K. Liao, and G. Hu

4.3 Pipe In

The Pipe In component implements a buffer used to store XML packets tem-
porarily as they flow from Input to XPath Processor. There are three major
reasons why we need it: (1) To separate data stream from different applications
before they reach the processor. (2) To match the speed between the Input and
the XPath Processor. (3) To speed up operations by storing received XML packet
in memory rather than a file. The size of the Pipe In buffer has to be adequate -
overflowed packets will be discarded, and this may cause problem for the linked
XPath Processor.

Pipe In holds an XML packet from being emitted until it has received a
’ready’ signal from the filter. It emits the packet to all tied processors found in
the Filter Table, and sets their Status to Busy.

4.4 XPath Processor

This component receives XML packets from Pipe In and invokes the lazy DFA
XML stream processing function in the XML Toolkit to analyze them. If a match
is found in the packet, it will create an XML packet containing the result enclosed
by two tags: <QueryString> and <AppicationID>, to clearly identified for which
application and for which user’s query this result is for, as shown below. The
processor then forwards the packet to Pipe Out. If no match is found, the packet
is discarded.

<ApplicationID>
<QueryString>
<Result>
....
</Result>
</QueryString>

</ApplicationID>

Since the lazy DFA model requires that the XML stream be complete XML
documents but in practice the first XML packet received by a XPath Processor
may be in the middle of an XML codument, the processor will not invoke the DFA
until it has detected the beginning of an XML document. All packets received
before the beginning packet are discarded and all packets received after the
beginning packet will be transferred to the DFA. Once the first XML document
has been processed, the XPath Processor may continue to send the subsequent
XML documents to the same DFA.

As mentioned before, the XPath Processor needs to generate a ’ready’ signal
to the Filter in order to get the next packet. It won’t be able to get one immedi-
ately becaue it has to wait for the Filter to receive ’ready’ signals from all other
linked XPath Processors. This gives rise to a speed matching problem between
the lazy DFA and XPath Processor. Fortunately, the lazy DFA functions can
tolerate non-continuous XML stream by itself as long as the packets have not
been damaged during network transmission, i.e. no illegal characters appear in
the received packet.

Network Layer XML Routing Using Lazy DFA 101

4.5 Query Manager

The Query Manager component is used to add continuous queries into the sys-
tem and delete them from the system. Each query must be made with a single
XPath expression. Two methods are used in Query Manager: addQuery and
removeQuery. It also maintains a table, called Query Table, containing informa-
tion about all queries for the applications. Each record in the table has these
fields: a Query String field that stores the XPath expression qury string provided
by the user, a Data Source ID that may be the port number used by a sending
applicaiton to communicate with the system, and N (say, 3) Destination IDs that
may be port numbers used by the destination applications to receive matched
results. The first two fields are used by the Filter to create XPath Processors
and generate XML packets for the searched results. Multiple destination fields
help the Output component to send a result to multiple destinations (limited to
3, in this case) specified by the user. The table looks like this:

Query Port No Port No Port No Port No
String (Source) (Destination 1) (Destination 2) (Destination 3)

....

4.6 Pipe Out

This component implements a buffer used to temporarily store XML packets of
searched results from multiple XPath Processors in a Filter. Because each packet
has a <QueryString> header, it would be easy to distinguish which result is for
which query. The Pipe Out component also synchronizes the speed between the
XPath Processor and Output components. Again, the buffer used in Pipe Out
should be adequate.

4.7 Output

The Output component sends matched XML data to one or more specified des-
tination applicaitons in the form of UDP packets through sockets. Each UDP
packet contains a search result in XML packet of up to 1024 bytes. Although
these packets are from all Filters against various queries, the component can
separate them using the <QueryString> and the <ApplicaitonID> tags in the
result. After receiving this information from a packet, the Output object looks
up the Query Table to find out where to send it. As we use socket for commu-
nicaiton, the destination applications may be local or remote.

5 Implementation

We have implemented a preliminary prototype of the XML router, mainly fo-
cused on the netwoking aspects of the components. In terms of network traffic

102 J. Dai, K. Liao, and G. Hu

for incoming XML stream, the combination of the Input and the Pipe In com-
ponents can be viewed as a network interface. They use UDP/IP data transfer
protocol to send XML packet stream from one machine to another. A ’server’
program simulates the generation of XML stream that reads from a 140MB XML
file and sends the data as a stream of 1024-bytes packets through Unix pipe to
’clients’ upon receiving requests from the clients. The clients communicate with
the server using socket and the communicaiton is synchronized as mentioned
before. The Pipe Out and Output components can be implemented in a similar
way. The XPath Processor is implemented in C++ that uses lazy DFA. The
Qury Manager has not been fully implemented at present time.

5.1 Network Interface

The network interface represents the Input and Pipe In components and is im-
plemented as a client-server architecture. The server program pre-forks multiple
processes listening to the same port for incoming clients’ requests. Each request
is handled by a server process. Each client keeps track of the status of its con-
versation with the server. Client should also be able to resume an interrupted
transfer at the point it was interrupted. The client implements the following
operations:

(1) int rropen(char *path)– network transaction
(2) int rclose(int filedes)– non network transaction
(3) int rread(int filedes, char *buffer, int nbytes) – network trans-

action.
(4) long rlseek(int filedes, long offset) – non network transaction.
(5) int initrcon(char *srvaddr, char *srvport)– initializes server conversa-

tion information.
(6) void initfiletbl()– initialize the file table.

A data structure will be needed on client side to keep of the state of a file
– a simple table (30 entries) with each entry of the format (path, read, offset).
Index of the entry can be used as a file-descriptor.

Client will get file data from a server that provides UDP data transfer ser-
vice. After the client gets the reply from the server, it takes the reply apartly
(bytesread and data), checks if there is an error (indicated by bytesread being
-1). If no error, it writes the data into the local file. It also checks if the num-
ber of bytes read is less than a predefined maximum transmission unit (MTU),
which is the maximum packet size, in bytes, that can be tranmitted across a
link. During the exchanging data with the UDP server, the client will retry the
request if no reply is forthcoming from server. After no response from server for
three times, client will sleep and retry the server. If no response is seen after two
sleep intervals, client will declare server problem, clean up the partial transfer
and terminate.

Network Layer XML Routing Using Lazy DFA 103

5.2 XPath Processor

Since the continuous query can be added dynamically at run-time, a special tag
is nedded just before the beginning of eaxh XML document. By adding such
tag, it will let XPath Processor know where is boundaies of XML documents in
an stream. Once the XPath Processor detects the beginning tag, it will forward
subsequent XML packets to the DFA, otherwise the XML stream will be dis-
carded until the beginning tag is encountered. The XML stream is transferred
through the pipe to multiple XPath processors, each of which corresponds to
one application process.

The XPath Processor is implemented in C++ and based on XML Toolkit
with some modifications to meet our situations. The class myHandler is used to
build a lazy DFA to register XPath expressions in the DFA and to define our
own XML events handlers, opens log file and gets ready for the incoming XML
packets.

In our implementation, multiple UDP/IP links are added to the Linux server.
These links can be added on the fly during the run-time. This mechanism can
be used to add continuous queries dynamically without affecting previous ones.
However, it has the side effects of increasing the network traffic, the best way
to add the queries is to fork additional processes using popen at the end of the
pipe from the network interface, as shown in Fig. 2, where run dblp, run nasa,
and sx run are specific applicaitons.

Network Interface �fork/pipe
begin data

sx run

run nasa

run dblp

�
�

�
���

popen

�popen

�
�

�
���

popen

Fig. 2. Multiple forked processes for different applicaitons

Fig. 2 illustrates that multiple processes/threads are forked according the
number of the user-defined continuous queries. Each query is a standalone dy-
namical class file that can be invoked at run-time. After all the processes/threads
are generated, each packet of the XML stream is delivered to these continuous
queries simultaneously with the same priority. Each continuous query corre-
sponds to a DFA generated by query tree/query condition. Any query tree may
contain tens or hundreds of thousands of XPath expressions on the XML stream.
The processor converts the entire query tree into one single nondeterministic fi-
nite automaton (NFA) and then builds the corresponding deterministic finite

104 J. Dai, K. Liao, and G. Hu

automaton (DFA). After the DFA has been constructed, the processor simply
keeps a pointer to the current state. On the startElement event, the processor
looks up the next current state in the DFA, and pushes the old state on a stack.
On an endElement event, the processor pops a state from the stack. Terminal
states in the DFA have an associated set of variables. Whenever such state is
reached, a variable match event is generated for each variable in the set. The
stack gets only as deep as the maximum depth of the XML document. Since we
use lazy DFA to handle the query expressions, the DFA is constructed on the fly
as the XML stream packets arrive so that the number of states that ever need
to be expanded is very small. Once the DFA detects the XML stream which
matches the pre-defined query condition, it will save the corresponding XML
stream data into a log file, these matched XML streams can also be delivered to
other XML Routers for further processing. In our experiments, we just append
the XML stream data into a text log file.

5.3 Query Manager

The Query Manager is used to add new continuous query into the system dynam-
ically without affecting previously registered continuous queries. As discussed in
the System Design section, the Query Manager maintains a Query Table to keep
track of the users’ queries from the network. Two methods that are used in the
Query Manager are addQuery and removeQuery. The addQuery method adds a
new continuous query to the system for processing. The removeQuerymethod re-
moves a previously existing query from the system and stops the process against
that query.

6 Experimental Benchmark Test

We have run some tests in our experiments to demonstrate the working of the
XML router. Our execution environment consists of Intel Pentium based PCs
running Red Hat Linux 8.0 3.2-7. The compiler is gcc version 3.2 without any
optimization options.

Two benchmark XML datasets were used in our experiments. One is the
NASA XML dataset [15] and the other is the DBLP Computer Science Bib-
liography [8] XML dataset. They are about 140 MB in size. We concatenated
these two XML documents in arbitrary sequence, with the <BeginData/> flag
inserted between the two XML documents. We tested the XML router against
several queries that were registered with the Query Manager. For example, for
the query that finds the references with a given reference-id

//reference[@referenceId=’rrf19’]/*

Fig. 3 shows the results as soon as the data in the XML stream matching the
query is discovered.

The test result shows that when slowing down the reading process from
one end of pipe, the writing process at another end of pipe will automatically

Network Layer XML Routing Using Lazy DFA 105

Fig. 3. Query process example

synchronize with the speed of reading process, so it is not possible to lose any
data when using pipe in our test case. However, in our experiment, the speed
for sending XML Stream from server side to client side is also controlled by the
pipe, in our case only after writing current packet to the pipe successfully, then it
is allowed to read new packet from the UDP socket. This means that server will
wait and not send new packet to the client until client has finished processing
the received packets. If the pipe itself is slowing down during the process, the
transmission speed from server side to slient side is adjusted to a slow pace.

Fig. 4 is a shapshot of a monitor that shows the CMU time spent for the
processes on the Linux system, including the running processes server and
sx run that had run 44 and 45 seconds respectively when the snapshot was
taken a little after the result in Fig. 3 was produced. Since the pipe reads and

106 J. Dai, K. Liao, and G. Hu

Fig. 4. Snapshot of CPU time spent on processes

writes the XML data through the memory directly without any disk I/O, the
processing speed of our router should be similar to that in [10].

Our experiment also shows that each of the run nasa and sx run processes
will consume a small amount of memory. The amount of memory used increases
during warm-up phase when most of the states in the lazy DFA are constructed.
The length of the warm-up phase depends on the size of the final lazy DFA
generated for the XML data. After the warm-up phase, the memory consumption
becomes stable to about 1.4 % total memory space in our experiment. The
memory space is released upon the completion of processing the query.

7 Summary and Discussion

We have presented a prototype of XML router for XML stream filtering and
delivering over the network. The main contribution of this paper is a design of
XML router that provides two basic routing functionalities: network interfacing
and XML package forwarding. It extends the current XMLTK functions so that
it can process arbitrary XML stream data from the network against user’s prede-
fined XPath queries. Our experiments show that the XML router does preform
the routing tasks correctly and is quite space efficient due to the uas of lazy
DFA. The time efficiency seems very good but we haven’t done a comparitive
study.

Network Layer XML Routing Using Lazy DFA 107

Our implementation of the XML router is only preliminary. We have focused
on the network interfacing between the XML stream source and the routing
processor. We are currently working on the implementaiton of the other compo-
nents in the design, particularly the Filter and the Query Manager. In additon,
thorough performance analysis is to be done to determine if the router is feasible
for real world applications.

References

1. S. Abiteboul, P. Buneman, and D. Suciu: Data on the Web: From Relations to
Semi-structured Data and XML. Morgan Kaufmann, 1999.

2. M. Altinel and M. Franklin: Efficient filtering of XML documents for selective
dissemination. In Proceedings of VLDB, pp.53-64, Cairo, Egypt, September 2000.

3. Iliana Avila-Campillo, Todd J. Green, Ashish Gupta, Mokoto Onizuka, Demina
Raven, Dan Suciu: XMLTK: An XML Toolkit for Scalable XML Stream Processing,
In proceedings of PLANX, October 2002.

4. Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, Jennifer Widom:
Models and Issues in Data Stream Systems, Proceedings of 21st ACM Symposium
on Principles of Database Systems (PODS 2002).

5. P. Buneman, S. Davidson, M. Fernandez, and D. Suciu: Adding structure to un-
structured data. In Proceedings of the International Conference on Database The-
ory, pages 336-350, Deplhi, Greece, 1997. Springer Verlag.

6. J. Chen, D. DeWitt, F, Tian, and Y. Wang: NiagaraCQ: a scalable continuous query
system for internet databases. In Proceedings of the ACM/SIGMOD Conference
on Management of Data, pp. 379-390, 2002.

7. J. Clark and S. DeRose: XML Path Language (XPath) Version 1.0, W3C Recom-
mendation. Technical Report REC-xpath-19991116, World Wide Web Consortium,
November 1999.

8. DBLP Computer Science Bibliography http://dblp.uni-trier.de/xml/
9. R. Goldman and J. Widom: DataGuides: enabling query formulation and optimiza-

tion in semi-structured databases. In Proceedings of Very Large Data Bases, pp.
436-445, September 1997.

10. Todd J. Green, Gerone Miklau, Makoto Onizuka, and Dan Suciu: Processing XML
Streams with Deterministic Automata, In proceeding of ICDT, 2003.

11. Ashish Kumar Gupta, Dan Suciu: Stream Processing of XPath Queries with Pred-
icates, In Proceeding of ACM SIGMOD Conference on Management of Data, 2003.

12. Processing molecular biology scientific data, European Molecular Biology Labora-
tory (EMBL). http://www.ccs.neu.edu/home/kenb/sdb/support/section3 2.html.

13. Alex C. Snoeren, Kenneth Conley, and David K. Gifford: Mesh-Based Content
Routing using XML, 18th ACM Symposium on Operating System Principles,
Banff, Canada, October 2001.

14. D. Terry, D. Goldberg, D. Nichols, and B. Oki: Continuous queries over append-
only databases. In Proc. of the 1992 ACM SIGMOD Intl. Conf. on Management
of Data, pp. 321-330, June 1992.

15. UW XML Repository http://www.cs.washington.edu/research/xmldatasets

Extending UML for a Context-Based Navigation

Modeling Framework of Web Information
Systems �

Jeewon Hong1, Byungjeong Lee1,��, Heechern Kim2, and Chisu Wu3

1 School of Computer Science, University of Seoul, Seoul, Korea
{jwhong, bjlee}@venus.uos.ac.kr

2 Dept. of Computer Science, Korea National Open University, Seoul, Korea
hckim@knou.ac.kr

3 School of Computer Science and Engineering, Seoul National University,
Seoul, Korea

wuchisu@selab.snu.ac.k

Abstract. Web information systems are rapidly increasing and the
structure of the systems becomes more complex. When users, however,
navigate such complex Web systems, they cannot often grasp the current
location and get the information that they want. Therefore, a systematic
approach to model the navigation of Web information systems is needed
that helps users get information, purchase products, and deal with com-
plexity. If the systems provide the information of their navigation context
with useful clues for exploring, users will easily comprehend the present
situation and find the information in a relatively short time. They will
also travel through the systems adaptively by using the context infor-
mation. In this paper, we describe extending UML for a context-based
navigation modeling framework of Web information systems. An exam-
ple of online bookstore is given to describe the models produced in the
framework.

1 Introduction

Web-based systems are rapidly increasing and evolving from simple applica-
tions showing static information to complex ones involving dynamic contents
with transaction processing. Web information systems developed to support e-
commerce and online businesses contain more complex contents and are used by
a diversity of users.

Web information systems are characterized by non-linear navigation because
they have hypermedia documents and hyperlinks. Users can move from a level
page of a contents hierarchy to lower or higher level pages or horizontally move
from a branch of the hierarchy to another branch. However, when users navigate
complex Web systems they cannot often grasp their current location, get the
� This work was supported by University of Seoul, Korea in 2004.

�� Corresponding author.

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 108–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Extending UML for a Context-Based Navigation Modeling Framework 109

information that they want, and lastly remember the important places they have
already discovered. The reasonable reason for these problems is the absence of
context information in Web information systems [1].

Therefore, a systematic approach to model the navigation of Web informa-
tion systems is needed that helps users get information, purchase products, and
deal with complexity. Constructing a navigation model is helpful for document-
ing the Web system structure and allows for improved navigability [2]. If Web
systems also provide the information of their navigation context with useful
clues for exploring, users will easily comprehend the present situation and find
the information in a relatively short time [1]. They will also travel through Web
systems adaptively by using the context information. Previous studies, however,
describe the navigation as a part of hypermedia design [2, 5] or do not explain
the navigation of Web systems including dynamic contents [3, 4].

In this paper, we describe extending UML for a context-based navigation
modeling framework of Web information systems. UML provides a formal ex-
tension mechanism to allow practitioners to extend the semantics of the UML.
The mechanism allows us to define stereotypes, tagged values and constraints
that can be applied to model elements [13]. We adopt UML stereotypes, con-
straints and custom icons for the framework and explain how to model the
context-based navigation using the framework. And the mappings between log-
ical interfaces and physical elements to realize the navigation are described.

This paper is organized as follows: Section 2 presents related work. In Section
3, a framework for modeling context-based navigation is proposed. The models
produced in the framework are described in Section 4. Finally, our conclusions
are drawn in Section 5.

2 Related Work

Several works have studied on modeling Web applications or hypermedia appli-
cations. In [2] a design methodology for hypermedia based on UML profile has
been introduced. The methodology consists of three steps that are conceptual,
navigational, and presentational design. The conceptual model is constructed
considering the functional requirements by using use cases. Based on this con-
ceptual model, the navigation space model and navigation structure model are
built in navigation design. The presentation model derived from the navigational
design can be implemented by HTML frames. However, user activities are re-
stricted to browsing because any frameset has two parts where the right frame
contains the presentation of the navigational class or index class and the left
frame represents the navigation tree. The methodology does not address the
navigation of dynamic contents.

The development using OOHDM consists of a four activities including con-
ceptual design, navigation design, abstract interface design, and implementa-
tion [3]. In OOHDM, a navigational context, the main structuring primitive
of the navigational space, can be defined in six ways: simple class based, class

110 J. Hong et al.

based group, link based, link based group, enumerated, and dynamic. However,
OOHDM may be not applicable to dynamic Web applications.

W2000, a framework for modeling Web applications using UML and HDM
(hypermedia design model), has been introduced [4]. W2000 classifies the de-
sign activity into a number of interdependent tasks and proposes extensions to
capture both operational and navigational aspects. The tasks include require-
ment analysis, hypermedia design, navigation design, state evolution design, and
functional design activities where a few models are produced as results of the ac-
tivities. However, W2000 does not address dynamic contents of Web applications
and support presentation design activity.

In [5] hypermedia models based on four views of hypermedia system have
been described. The models include application domain model, navigation model,
presentation model, and user model, which are described using UML. The user
model incorporates various characteristics of different users and supports person-
alization of hypermedia systems. However, since the presentation model is direct
refinement of adaptive navigation model based on a state diagram, the separa-
tion between navigation and presentation is not obvious and the presentation
model does not describe user interface.

UML/WAE profile has been adopted to describe Web application structures
and artifacts [6]. The study represents Web-based systems at various levels of
abstraction and detail such as user experience-level and design-level. However,
the study only focuses on a presentation model and does not address navigation
context that helps users decide the way in which they explore consistently.

In [7] statecharts have been used to model Web navigation, which is classified
into intra-page, inter-page, and frame-based navigations. States in statecharts
are, however, not consistent in their use since the states can represent a Web
page, a position of Web page, a menu item, or a selection of script. The study
describes only navigation related to pages and frames and not navigation con-
texts.

UWE metamodel conservatively extends the UML metamodel to provide the
basis for a common metamodel for Web applications and for the CASE-tool
supported design [8]. Conservative extension means that the UWE metamodel
does not modify but inherits modeling elements of the UML metamodel. UWE
metamodel concepts are mapped to a UML profile to be automatically checked
by nearly every UML CASE tool. However, the UWE UML profile may be too
complicated due to added inheritance structure, tagged values, and associations.

3 Navigation Modeling Framework

In this section we describe a framework for modeling the context-based naviga-
tion of Web applications (Figure 1). The framework defines navigation modeling
phases and produces navigation models by using UML extension mechanisms.
Each block in Figure 1 identifies a phase with activities. The activities are per-
formed iteratively and incrementally while one or more models in each activity
are constructed or refined. First, in navigation analysis phase domain is analyzed

Extending UML for a Context-Based Navigation Modeling Framework 111

Navigation Analysis

Navigation
Context Model

Use case
Analysis

Navigation Design Navigation Realization

Navigation Information
Model

Navigation Interface
Model

WebPage
Navigation

Model

Component
Navigation

Model

Fig. 1. A Framework for Navigation Modeling

by using use case and the analysis is described in text and represented by UML
use case diagram, focusing on navigation. From this analysis a navigation con-
text model is constructed, focusing on criteria for navigation decision frequently
encountered in application modeling. The navigation context model shows the
navigation associated with interacting external viewpoints.

Next, in navigation design phase we find information units and paths and
produces two models: a navigation information model and a navigation interface
model. The first is derived from the navigation context model and use case anal-
ysis, and defines semantic units appropriate for navigation purposes. Showing re-
lated information on one screen is not often possible since Web applications con-
tain a lot of contents and the contents are complex. Thus we must explore a num-
ber of pages to accomplish our purpose. Since gathering related information and
showing it on screens on demand help minimize cognitive overload [9], it is needed
to define a navigation interface by describing how to display gathered informa-
tion on screens. The navigation interface model aims at presenting information of
the same semantic unit step by step and avoiding cognitive overhead, specifying
which information of the unit users ask to see further. The model also identifies
components playing a role of trigger in each interface for navigating Web applica-
tions. The navigation interface model is derived from the navigation information
model and both of the models are designed iteratively and incrementally.

Finally, in navigation realization phase we produce a WebPage navigation
model and a component navigation model based on a metamodel of Web infor-
mation system. Then we associate logical navigation constituents with physical
navigation elements. The logical navigation constituents include interface screens
and objects derived from navigation analysis and design phases and are mapped
to elements implementing Web contents.

Web traversal includes hierarchical navigation, global navigation, local navi-
gation, and ad-hoc navigation [10]. Hierarchical navigation and local navigation
are the most common because many Web sites have contents hierarchies con-
sisting of pages with a number of links to other pages. If security is required in
Web applications, navigation paths have a tunnel structure that is a linear chain
of paths [11]. In Section 4 we describe access elements to support hierarchical
navigation and local navigation taking into account security.

112 J. Hong et al.

4 Framework Models

4.1 Navigation Analysis

Navigation Context Model. Domain analysis establishes goals to achieve in
Web systems. The navigation context model derived from domain analysis using
use case illustrates traverse of Web sites from an outside perspective, which
consists of navigation contexts and their relationships. A navigation context can
be defined by either describing a feature that all classes and links in the context
have, or by listing its elements [3]. We define a navigation context from the
viewpoint of understanding the overall navigation of Web information system,
that is, a navigational use case viewpoint, while the navigation context defined
in [3, 15] describes how to explore navigation elements rather than the overall
navigation.

The navigation context model, adapted from the navigational use-case model
in [4], shows contexts providing the information or the way about how the user
should travel Web applications. The main differences between the navigation
context model and the navigational use-case model are that a navigation context
model shows navigation stereotypes of use case and that the navigation contexts
of our model are mapped to and realized by WebPage navigation models and
component navigation models. Stereotypes in the UML allow us to define new
semantics for a modeling element.

Stereotyped classes can be rendered in a UML diagram with either a cus-
tom icon, or simply adorned with the stereotype name between guillemets (�
�). UML semantics can also be extended by inheriting UML metamodel and
providing mapping to stereotypes [8]. For example, UML browsing semantics is
extended by adding a new submetaclass for the Event metaclass in State Ma-
chines subpackage [12].

We use a �navigationContext� stereotyped use case (see Table 1 in Ap-
pendix A.) as a use case describing the navigation of Web applications. Fig-
ure 2 represents a navigation context model of a generic online bookstore that
shows not exceptional flows but basic navigation flows of the online bookstore.
This model helps understand applications in abstract level. Navigating an on-
line bookstore aims at finding and purchasing one or more books that customers
want to read. Figure 2 shows that online bookstore users are initially unau-
thorized and are authorized if they register themselves by performing ”SignIn”
later. Only the authorized can update personal information of themselves and
they must sign-in again to pay for books. After users browse books, they can
browse their shoppingCart and pay for books.

4.2 Navigation Design

Navigation Information Model. A navigation information model identifies
semantic units appropriate for each navigation context of the current Web ap-
plication in particular domain. The identification and definition activities of the
semantic units and their relationships perform finding classes and relationships

Extending UML for a Context-Based Navigation Modeling Framework 113

User <<navigationContext>>

Browse Books

<<extend>>

<<navigationContext>>

Browse ShoppingCart

<<navigationContext>>

Pay for Books
SignIn<<navigationContext>>

Browse MyInfo

<<include>><<extend>>

<<extend>><<extend>>

Fig. 2. A Navigation Context Model for Online BookStore

between classes and specifying attributes and operations. This model focuses on a
navigation context and shows classes and their relationships in the context. This
navigation information model identifies �navigationClass� stereotyped classes
for semantic units and their relationships in a particular navigation context to
achieve the purpose of the user. The navigation space model in [2] describes nav-
igational classes similar to our �navigationClass� stereotyped classes, but does
not focus on a navigation perspective. Thus we have extended the navigation
space model to focus on a particular navigation context.

This model shows how to navigate to associated classes in a navigation context.
The model is represented by UML class diagram with �navigationClass� stereo-

<<navigationClass>>

Book

- title : String

- genre : Genre

- author : Author

<<navigationClass>>

Genre

- name : String

- books : Book[]

<<navigationClass>>

Author

- name : String

- books : Book[]

- interviews : Video

- photo: Image

- profile : String

prefer

categorize write

<<contextNote>>

Browse Books

1

1..*

1..*

1

1..*

1..*

Fig. 3. A Navigation Information Model for Browse Books context

114 J. Hong et al.

<<navigationClass>>

Book

- title : String

- price : Integer

- quantity : Integer

<<navigationClass>>

ShoppingCart

- total : Integer
use

select add

<<contextNote>>

Pay for Books

+ Purchase ()

1..*

<<navigationClass>>

User

- ID : String

- pwd : Password 1

1..*

1

1..*

1

Fig. 4. A Navigation Information Model for Pay for Books context

typed classes (see Table 1 in Appendix A.) surrounding by a note with a context
name and dotted lines. Figure 3 shows that ”Book”, ”Genre”, and ”Author” nav-
igation classes are explored in the ”Browse Books” context from online bookstore
user viewpoint. From Figure 3, we can see that this model also allows the same se-
mantic unit to be explored in different ways and have different paths according to
detailed contexts. For example, we search ”J. K. Rowling”, navigate to her books
and then find ”Harry Potter” in online bookstore. Alternatively, we can also find
”HarryPotter”while exploring books about a genre of fantasy. Figure 4 shows that
”User”, ”Book”, and ”ShoppingCart” navigation classes are explored in the ”Pay
for Books” context from the authorized user viewpoint.

Navigation Interface Model. Web pages usually have a number of links that
enable us to explore other pages in the current site or other sites. We get in-
formation or purchase products, while traversing these pages and links in Web
applications. Well-organized information involves a navigation context that helps
choose a right path among several paths. We define a navigation interface model
by applying Information on Demand pattern [9] to generic interface models. To
apply Information on Demand pattern, the navigation interface model utilizes
attributes of navigation classes to construct an interface providing a navigation
context of well-organized information. First, we identify closely related informa-
tion out of a navigation class and the information is displayed in an interface
screen. Next, we make links from attributes representing the others of the infor-
mation. Finally, we add the links to the interface to travel from it to the others.
If each interface screen presents closely related information or cohesive informa-
tion, an organization of such interfaces shows the information of a navigation
context and allows users to explore efficiently. When designers also determine the

Extending UML for a Context-Based Navigation Modeling Framework 115

Photo

Profile

...

Books

...

Author

Interviews

A video clip showing

interviews is running

Author

click /

pop-up

Fig. 5. How to show the information of the Author class in Fig. 3

way in which attributes and links of nodes are displayed, they should consider
the cognitive capability of the user [9].

When applying Information on Demand pattern in [9], the same screen is
used to show different attributes. However, our interface model shows different
attributes of the same navigation class in other pop-up interface screens. We can
get the feeling of seeing the same navigation class and avoid cognitive overhead
naturally if the small number of pop-up interfaces show other attributes of the
class on demand. Moreover, we do not have to go back to the original screen by
clicking ”Back” button or link in browser because we can see both of the original
and pop-up screen at the same time. Things to note are that all attributes of
a navigation class should be well organized so that the basic attributes of the
class are displayed in the original interface screen and that the number of pop-up
interface screens of a navigation class should be small.

This model also shows interface objects contained in a screen and links be-
tween the objects. The interface objects are identified when Web application
architecture is designed and Web designers choose objects fit for the purpose
of the user, considering cognitive overhead. Initially, Internet-based applications
gained little control of a browser and the browser displayed only static page and
explored the applications by clicking on hyperlinks. Now, Web applications allow
dynamic contents to accept a request from users and process it. New technologies
such as scripts, controls, and applets provide ways to control traveling between
Web pages without activating hyperlinks. Adding or deleting links affects navi-
gation paths and site structure in complicated Web applications and sometimes
causes problems with consistency and security. Therefore interface objects should
be defined and designed in detail for navigating Web applications with complex
and dynamic contents. Interface objects, independent of implementation tech-
nologies, are mapped to elements of Web pages described in Subsection 4.3.

Figure 5 shows an example of how the information of the ”Author” class in
Figure 3 is displayed on screens. The left screen shows the information of an
author except the author’s interviews and includes a button or a link object to
trigger a screen showing the interviews. If the user clicks the ”Interviews” link,
the right screen pops up, and displays the interviews of the author.

Figure 6 shows a navigation interface model corresponding to Figure 5. An
AuthorScreen class has an interviews link object and two operations as an in-

116 J. Hong et al.

show

AuthorScreen

- interviews: Link

- display()

- showInterview()

<<navigationClass>>

Author

- name : String

- books : Book[]

- interviews : Video

- profile : String

- photo: Image

- quit: Button

InterviewScreen

- display()

- quit()

pop-up

Fig. 6. A Navigation Interface Model corresponding to Fig. 5

terface screen of navigationClass Author. The AuthorScreen class shows the
information of the Author class. If a user clicks the interviews link, showInter-
view operation is invoked. Then InterviewScreen pops up and displays a video
clip showing the interviews of the author.

4.3 Navigation Realization

Figure 7 shows a metamodel of Web information systems where each leaf class
is a physical element. Table 1 in Appendix A describes UML stereotypes used in
this study. The stereotypes include elements of the metamodel in Figure 7. An
appropriate navigation realization is done using those elements according to the
characteristics of Web contents.

A window is divided into frames spatially and each frame is associated with
several Web pages. Each Web page has zero or more links to other static or
dynamic pages. A static page can be built from one or more dynamic pages
using given parameter values. Simple or composite components contained in a
static page interact with a dynamic page. Simple components are a text, a table,
a list, a button, an anchor, etc. Composite components are a form, a code, a
menu, a bulletin board, etc.

The navigation interface screens and objects derived from the navigation
design phase are mapped to physical navigation elements to provide consistency
between navigation design and navigation realization. For example, the interface
screen classes in Figure 6 are mapped to WebPages in Figure 7. The interface
objects in Figure 6 such as a link and a button are also mapped to an Anchor
and a Button element in Figure 7.

The following well-formedness rules using OCL(Object Constraint Language)
apply to the metamodel in Figure 7.

1. Two Web pages are connected by a navigation link. If a target page of the
link is a dynamic page, the link may only have one or more arguments. Oth-
erwise it may only have no arguments.

context NavigationLink inv:
self.connect->size() = 2

Extending UML for a Context-Based Navigation Modeling Framework 117

StaticPage

Component

send to

DynamicPage
build

Window

navigate

Frame

WebPage

1..*

NavigationLink

1

1

1

CruiseLink TunnelLink

1..*

CompositeComponent SimpleComponent

target

divided into

Button

Table

Text
Code FormMenu

Bulletin

board

reference

load

Anchor

2

assign

connect

1..*

Fig. 7. Metamodel for Web Information System

if self.connect.target.oclIsTypeOf(DynamicPage) then
self.connect.arguments->size() ≥ 1

else
self.connect.arguments->size() = 0

endif

2. A TunnelLink may only enable us to navigate to a Web page by activating
a link contained in the owner page of the link. The link may only invalidate
to navigate to other pages. For example, a TunnelLink may only invalidate
to go back to a previous visited page in a tunnel structure.

context TunnelLink::activate(args): boolean
pre: self.navigate.target->include(self.connect.target)

3. A composite component sends parameters to a dynamic page.

context CompositeComponent::send(parameters): boolean
pre: self.sendTo.oclIsTypeOf(DynamicPage)

4. More than a Web page may be loaded into a frame.

context Frame inv:
self.pages->size() ≥1

118 J. Hong et al.

navigate navigate navigate navigate

Cruise category

-category : id

-self : frame

<< cruiseLink>>

Cruise book

-book : barcode

-self : frame

<<cruiseLink>>

Cruise cart

-book : barcode

-self : frame

<<cruiseLink>>

Cruise catalog

-self : frame

<<cruiseLink>>

<<webPage>>

Home

<<webPage>>

Catalog

<<webPage>>

Category

<<webPage>>

BookInfo

<<webPage>

ShoppingCart

Fig. 8. A WebPage Navigation Model for Browse Books context

navigate navigate navigate

Tunnel Delivery

-id

-password

-self : frame

<<tunnelLink>>

Tunnel payment

-delivery

-self : frame

<<tunnelLink>>

Tunnel confirm

-payment

-self : frame

<<tunnelLink>>

<<webPage>>

SignIn

<<webPage>>

Delivery Info.

<<webPage>>

Payment

<<webPage>>

Confirm

<<tunnelNote>>

entry

<<tunnelNote>>

exit

Fig. 9. A WebPage Navigation Model for Pay for Books context

5. An anchor references a Web page and specifies a frame to load the page into.

context Anchor inv:
self.pages->size() = 1
self.frames->size() = 1

WebPage Navigation Model. A WebPage navigation model is expressed as
a UML class diagram and a set of WebPages connected by links in the model
realizes a context in the navigation context model. We define a navigation link
by extending a link class used in [14], where the link class has not been speci-
fied in detail according to the structure of Web pages but represents only link
parameters. If designers intend to guide normal navigation of contents hierarchy
in Web applications, they use a cruise link to direct the exploration from one
WebPage to other. Since a set of cruise links and WebPages implements a navi-
gation context derived from domain analysis, the navigation can be understood
easily.

In this paper we express a cruise link as a UML stereotype. Figure 8 shows that
the ”Browse Books” context in Figure 2 is mapped to and realized by a WebPage
navigation model that describes the navigation from ”Home” WebPage through
”Catalog”, ”Category”, and ”BookInfo” to ”Shopping Cart” WebPage to find
books. In Figure 8 we can also see that stereotyped association classes with a flag

Extending UML for a Context-Based Navigation Modeling Framework 119

BriefBookInfo Play interview

activate(interview)

/popup()

Comment Book Details

select(book)

activate(comment)

/move(comment)
activate(book)

activate(details)

/move(details)

activate(book)

Book

activate(cart)

Fig. 10. A Component Navigation Model in BookInfo WebPage

icon are used to guide the traveling from the ”Home” to the ”Shopping Cart” Web-
Page. If the linkhas anassociation classwithoneormoreparameters excepta frame
parameter, it represents an exploration to a dynamic page.Otherwise, it represents
an exploration to a static page. In Figure 8, The ”Catalog” WebPage indicates a
static page and the other WebPages indicate dynamic pages. From any WebPage
of cruise navigation we can jump to global navigation by using menus or indexes,
explore other WebPages, and return to the starting WebPage.

Figure 9 shows that the ”Pay for Books” context in Figure 2 is mapped to
and realized by a WebPage navigation model that describes the navigation from
the ”SignIn” to ”Confirm” WebPage to purchase books. This navigation has a
tunnel structure with only one entry and one exit [11]. Unlike a cruise link, if we
navigate from any WebPage in a tunnel to other WebPages outside the tunnel,
the tunnel link does not allow us to go back to a WebPage in the tunnel and
we must again navigate from the entry WebPage. If we are presented a piece
of context information about where we are in the tunnel during the time we
navigate the WebPages in the tunnel, it helps us understand the tunnel and
avoid traveling it in vain. The tunnel structure is best fitting for modeling the
navigation of secure contents and is expressed as a stereotype with an icon and
notes. From Figure 9 we can see that stereotyped association classes with a tunnel
icon are used to indicate the links in a tunnel. Current Web contents introduce
several navigation structures [11], and these structures can be expressed using
UML stereotypes such as cruise links and tunnel links.

Component Navigation Model. Web pages contain physical navigation com-
ponents that are a form, a button, a script, an applet, a control, etc. We describe
component navigation by using physical elements and events triggering transi-
tion to a particular section in the same WebPage or the other WebPage. We
use statechart diagrams to show navigation between components in a WebPage.
Each state in this model represents a component while each state in [7] is a page,
a position of page, or a menu item and each state in [12] is a Web page or an
information chunk presented to a user.

120 J. Hong et al.

Cart
activate(checkout)

activate(cart)

modify(book,quantity)

or

delete(book)

Fig. 11. A Component Navigation Model of Shopping Cart component

The component navigation model in Figure 10 shows the navigation of com-
ponents in the ”BookInfo” WebPage in Figure 8. This component navigation
model begins with selecting a book in the ”Category” WebPage. First, we see
the brief information of the selected book in the WebPage. Then we may activate
a comment or a book details to move to a particular section of the WebPage, or
activate an interview to navigate to a pop-up WebPage showing a video clip. If
we want to purchase the book, we activate a cart and navigate to the ”Shopping
Cart” WebPage. The component navigation model in Figure 11 shows the nav-
igation of a cart component in the ”Shopping Cart” WebPage. We may modify
the quantity of the selected book in Figure 10 and delete the book. Activating
checkout allows us to navigate to the entry WebPage of the ”Pay for Books”
context in Figure 9.

The component navigation model is also used to describe the navigation of
dynamic contents because the components include code such as applets, scripts
and controls that interact with each other and helps understand the behavior of
components in a WebPage. Since the WebPage navigation is triggered by nav-
igation components, a component navigation model and a WebPage navigation
model complement each other.

5 Conclusion

In this paper we have described extending UML for a context-based navigation
modeling framework of Web information systems. The framework has naviga-
tion models and phases such as analysis, design, and realization. One or more
navigation models are constructed in each phase. We have adopted UML ex-
tension mechanisms for expressing the models and explained how to analyze
and design the context-based navigation using the models. And the mappings
between logical interfaces and physical elements to realize the navigation have
been illustrated.

The context-based navigation assistance plays a powerful role in exploring
Web information system [1]. So this framework to model the context-based nav-
igation is expected to improve the overall navigability of Web applications. This
framework also presents a consistent way to communicate about Web navigation
with artistic designers and software developers. However, the modeling elements

Extending UML for a Context-Based Navigation Modeling Framework 121

are not enough for complex navigation and this framework provides the same
navigation for a diversity of users with different interests.

While the contents and the complexity of Web applications are rapidly in-
creasing and the structure contains a wide variety, the navigation sometimes
tends to have particular patterns according to the purposes of Web applications
[11]. So we plan to analyze Web navigation, identify modeling elements for de-
scribing the patterns, and refine the framework by using these elements. We will
provide navigation modeling of users with various interests and preferences.

References

[1] Park, J., Kim, J.: Effects of Contextual Navigation Aids on Browsing Diverse
Web Systems. In Proceedings of the Conference on Human Factors in Computing
Systems (2000) 257-264

[2] Hennicker, R., Koch, N.: A UML-based Methodology for Hypermedia Design. In
Proceedings of the Third International Conference on UML (2000) 410-424

[3] Schwabe, D., Rossi, G.: An Object Oriented Approach to Web-based Application
Design. Theory and Practice of Object Systems 4(4) (1998) 207-225

[4] Baresi, L., Garzotto, F., Paolini, P.: Extending UML for Modelling Web Appli-
cations. In Proceedings of the 34th Hawaii International Conference on System
Sciences (2001)

[5] Dolog, P., Bieliková, M.: Hypermedia Modelling Using UML. In Proceedings of
Information Systems Modelling (2002)

[6] Larsen, G., Conallen, J.: Engineering Web-Based Systems with UML assets. An-
nals of Software Engineering 13 (2002) 203-230

[7] Leung, K.R.P.H., Hui, L.C.K., Yiu, S.M., Tang, R.W.M.: Modeling Web nav-
igation by Statechart. In Proceedings of International Computer Software and
Applications Conference (2000)

[8] Kraus, A., Koch, N.: A Metamodel for UWE. Technical Report 0301, Ludwig-
Maximilians-Universitat Munchen (2003)

[9] Rossi, G., Schwabe, D., Garrido, A.: Design Reuse in Hypermedia Applications
Development. In Proceedings of The 8th ACM International Conference on Hy-
pertext (1997)

[10] Rosenfeld, L., Morville, P.: Information Architecture for the World Wide Web.
2nd ed. O’Reilly (2002)

[11] Gillenson, M., Sherrell, D. L., Chen, L.: A Taxonomy of Web Site Traversal Pat-
terns and Structures. Communications of the AIS 3 (2000)

[12] Dolog, P., Bieliková, M.: Modeling Browsing Semantics in Hypertexts Using UML.
In Proceedings of Information Systems Modelling (2001)

[13] Object Management Group, Inc.: OMG Unified Modeling Language Specification,
Version 2.0. OMG (2004)

[14] Conallen, J.: Building Web Applications with UML. 2nd ed. Addison Wesley
(2002)

[15] Baumeister, H., Koch, N., Mandel, L.: Towards a UML Extension for Hypermedia
Design: In Proceedings of UML’99 Conference. LNCS 1723 (1999) 614-629

A Appendix

In Table 1, Base class column shows classes in UML metamodel and Parent
column shows parent classes in the metamodel described in Figure 7.

122 J. Hong et al.

Table 1. Stereotypes for Navigation Modeling of Web information systems

Stereotype Base class Parent Description

NavigationContext
�navigationContext�

UseCase NA A NavigationContext describes a
navigation usecase of Web sys-
tems.

NavigationClass
�navigationClass�

Class NA A NavigationClass defines a se-
mantic unit appropriate for a
navigation context.

Window
�window�

Class NA A Window is a display in
browser.

Frame
�frame�

Class NA A Frame is a region of a window.

WebPage
�webPage�

Class NA A WebPage is a StaticPage or a
Dynamic Page.

StaticPage
�staticPage�

Class WebPage A StaticPage is a HTML page.

DynamicPage
�dynamicPage�

Class WebPage A DynamicPage is a WebPage
that contains dynamic contents
on the server.

NavigationLink
�navigationLink�

Association NA A NavigationLink is a kind of as-
sociation between WebPages.

CruiseLink
�cruiseLink�

Association NavigationLink A CruiseLink represents a nor-
mal link between WebPages.

TunnelLink
�tunnelLink�

Association NavigationLink A TunnelLink represents a nav-
igation between WebPages in a
tunnel structure.

Component
�component�

Class, State NA A Component is a Composite-
Component or a SimpleCompo-
nent.

CompositeComponent
�compositeComponent�

Class, State Component A CompositeComponent is a
form, a code, a menu, a bulletin
board, etc.

SimpleComponent
�simpleComponent�

Class, State Component A SimpleComponent is a button,
an anchor, a table, a text, etc.

BulletinBoard
�bulletinBoard�

Class, State CompositeComponent A BulletinBoard is a message
board to allow members to ex-
change their information.

Menu
�menu�

Class, State CompositeComponent A Menu is a list of various op-
tions available.

Code
�code�

Class, State CompositeComponent A Code is an applet, an ActiveX
control, a script, etc.

Form
�form�

Class, State CompositeComponent A Form is a HTML form.

Anchor
�anchor�

Class, State SimpleComponent An Anchor is a HTML anchor.

Button
�button�

Class, State SimpleComponent A Button is a simple HTML but-
ton.

Table
�table�

Class, State SimpleComponent A Table is a HTML table.

Text
�text�

Class, State SimpleComponent A Text is a text string.

ContextNote
�contextNote�

Comment NA A ContextNote is a note used for
describing a navigation context.

TunnelNote
�tunnelNote�

Comment NA A TunnelNote is a note used for
describing a tunnel structure.

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 123 – 137, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Conversion of Topic Map Metadata to RDF Metadata for
Knowledge Retrieval on the Web

Shinae Shin1, Dongwon Jeong2, and Doo-Kwon Baik3

1 Dept. of ITA/Standardization, NCA,
NCA Bldg, 77, Mugyo-dong, Chung-ku, Seoul, 100-775, Korea

sashin@nca.or.kr
2 Dept. of Informatics & Statistics, Kunsan National University,

San 68, Miryong-dong, Gunsan, Jeollabuk-do, 573-701, Korea
djeong@kunsan.ac.kr

3 Dept. of Computer Science & Engineering, Korea University,
1, 5-ka, Anam-dong, Sungbuk-gu, Seoul, 136-701, Korea

baik@software.korea.ac.kr

Abstract. The current Web is ‘machine-readable’, but not ‘machine-
understandable’. Therefore, new methods are required for machines to exactly
understand an amount of Web information resources. A proposed solution for
this issue is to use machine understandable metadata to describe information
resources contained on the Web. There are two leading methods to describe
metadata of Web information resources. One is Topic map, ISO/IEC JTC1's
standard, and the other is RDF, W3C's standard. To implement effective
semantic web (machine-understandable web), semantic web must handle all
metadata of web information resources. For this, the necessity of
interoperability is needed between Topic map area and RDF area. There are
some previous researches on conversion method between Topic map and RDF,
but these methods generate some loss of meaning or complicated result. In this
paper, a new method to solve these issues is proposed. This method decreases
the loss of implied semantics in comparison with the previous conversion
methods and generate clear RDF graph.

1 Introduction

1.1 Motivation

The Web became a huge repository of information resources. However, the current
Web is ‘machine-readable’ but not ‘machine-understandable’ [7]. Due to its huge size
and high creation rate, it is impossible to manage the web information manually. It
requires new methods that machines understand and handle an amount of Web
information resources exactly.

A solution is to use machine-understandable metadata to describe the information
resources contained in the Web [7]. Metadata is ‘data describing Web resources’ in
the context of Web [7]. It helps structured description of resources.

There are two leading methods to describe metadata of Web information resources.
One is Topic map that is ISO/IEC JTC1's standard [12] and the other is RDF that is
W3C's standard [7], [8].

124 S. Shin, D. Jeong, and D.-K. Baik

Topic map and RDF have a number of similarities. Both have been developed for
the representation, interchange, and exploitation of semantic model-based data of
information resources on the Web. Also, they describe data using a labeled graph with
nodes and arcs that can be serialized in one or more XML based syntaxes [2]. Topic
map was created to make high-level indexing sets of information resources. RDF was
intended to support the vision of Semantic web through providing structured metadata
about resources and a foundation for logical inference [1]. W3C is studying an
evolution of current web to the Semantic web. The Semantic web is composed of
RDF family. So the Semantic web must handle all information that is described by
other methods such as Topic map. More effective Semantic web can be realized if
metadata of information resources are described using both semantics of Topic map
and RDF. It will help integration of various web metadata.

There are some previous researches on conversion method between Topic map and
RDF. [2] proposed a conversion method emphasized on ‘association’ of Topic map.
Therefore, an original meaning is changed after conversion. Although [3] is a more
supplemented method, it makes additional edges (blank nodes). It produces a
complicated RDF more than the original. [1] proposed the new conversion
vocabularies by a solution about problems of [2], [3]. It has the limitation that users
must understand for applying the method and add vocabularies into their original
specification.

In this paper, a conversion method from Topic map into RDF is proposed. This
method decreases loss of implied semantics in comparison with the previous
conversion methods. In Section 2, the related researches are reviewed and analyzed.
Section 3 presents our proposed method using graphs. Section 4 shows the experiment
and evaluation results. Finally, Section 5 summarizes our proposal and discusses
future plan.

1.2 Overview of the Topic Map and RDF

(1) Topic map
Topic map defines how to describe and handle information resources to navigate on
the Web. This is the role of index. Topic map is encoded by XML. It is called
XTM(XML Topic Map). Topic map captures the subjects of which information
resource speaks, and the relationships between subjects [13]. Topic map is a n-ary
labeled graph with prereifications [2]. Topic map graph is constructed with nodes and
arcs. Fig. 1 illustrates a basic scheme of Topic map graph.

a :A s s o c ia tio n

r1 :R o le r2 :R o le

t1 :T o p ic t2 :T o p ic

a

r r

a :A s s o c ia tio n

r1 :R o le r2 :R o le

t1 :T o p ic t2 :T o p ic

a

r r

Fig. 1. Basic Topic map graph. Topic map is basically composed of two topic, an
association and two role.

 Conversion of Topic Map Metadata to RDF Metadata 125

(2) RDF
RDF(Resource Description Framework) is a foundation for processing metadata. It
provides interoperability between applications that exchange machine-understandable
information on the Web [7]. RDF is a data model for objects (resources) and
relations between objects, and provides a simple semantics for the data model. In
RDF, information resources are represented by Uniform Resource Identifies(URIs)
[7]. The information resources consist of any items. The information resources may
be an entire Web page, a part of a Web page or a object which is not accessible via
the Web [7].

RDF statement is composed of three individual parts; subject, predicate,
and object. The RDF statement can be expressed by directed labeled graphs. In
RDF diagrams, the nodes represent resources(subjects, objects) and arcs
represent properties(predicates)[7]. Fig. 2 shows a basic RDF graph
scheme.

s:subject o:object
p:predicate

s:subject o:object
p:predicate

Fig. 2. Basic RDF graph. RDF is basically composed of a subject, object and
predicate.

2 Related Researches on Conversion Topic Map to RDF

Several researches have been studied on mapping, integration, and conversion of
Topic map and RDF [1], [2], [3], [4].

[1] uses a way in which RDF can be used to model Topic map and vice versa. For
this, the author created new vocabularies to enable semantic interchange between
Topic map and RDF. However, this method can not accept previous Topic map data
and has difficulty on understanding and using Topic map for users.

In [2], the authors use node type. They classified nodes of Topic map as t-
node(topic node) and a-node(association node). It doesn’t deal role as a
separate node. And this method converts Topic map to RDF with priority given to
association of Topic map. It assigned association(a-node) of Topic map to
subject of RDF. Therefore, it causes loss of meanings and change of original
meanings after conversion.

[3] shows how the main constructions on RDF model can be expressed in Topic
maps and vice versa. It has tackled the key issues of the conversion which lie around
the area of association and statement. It makes additional edges(blank nodes)
when conversion Topic map to RDF, thus it produces complicated RDF statements.

In [4], the XTM to RDF translator, XTM2RDF Translator has been introduced
using XSLT-based technology to translate any Topic map document expressed in the
XTM syntax into RDF abbreviated syntax. It generated RTM(RDF TopicMap)
elements, new vocabularies, to translate XTM elements into RDF elements based on
TMPM4 (Topicmap.net's Processing Model for XTM). This method also can not
handle existed Topic map data and has difficulty that users must understand to using

126 S. Shin, D. Jeong, and D.-K. Baik

them. It also doesn’t express various semantics that could be created from topic and
role of Topic map. Thus, it causes loss of meanings.

3 Conversion Topic Map to RDF

3.1 Notations and Symbols

Several symbols and notations are used to describe conversion rules in this paper.
Table 1 shows the defined notations and symbols.

Table 1. The defined notations and symbols for our conversion rules

Notations
/Symbols

Description
Notations
/Symbols

Description

TMi instance of Topic map pi ith predicate of RDF

RDFi instance of RDF newp’ new predicate1 of RDF

ti ith topic of Topic map newp’’ new predicate2 of RDF

ri ith role of Topic map node

a association of Topic map arc of Topic map

si ith subject of RDF arc of RDF

oi ith object of RDF

3.2 Concept of Proposed Method

Topic map and RDF have different schemes and syntaxes. A basic RDF graph is a
binary model: one arc and two nodes. The basic Topic map graph has a much more
complex model: n-ary graph. Topic map expresses more information than RDF [1].
Thus, the most important issue for conversion between them is to minimize the loss of
original meanings. The proposed method will reduce the loss of meanings.

a:C om pose

r1:C om poser r2 :O pera

t1:Puccini t2:Tosca

a

r r

a:C om pose

r1:C om poser r2 :O pera

t1:Puccini t2:Tosca

a

r r

Fig. 3. Sample Topic map graph. This sample has been used often in other researches.

The six data can be extracted from Fig. 3 in view of subject, predicate,
object as follows.

 Conversion of Topic Map Metadata to RDF Metadata 127

 Meaning 1 (M1) : Puccini Compose Tosca.
 Meaning 2 (M2) : Puccini’s Opera is Tosca.
 Meaning 3 (M3) : Puccini is a Composer.
 Meaning 4 (M4) : Tosca is a Opera.
 Meaning 5 (M5) : Tosca’s Composer is Puccini.
 Meaning 6 (M6) : Composer Compose Opera.

RDF scheme is expressed as a triple scheme that is composed of subject,
predicate, and object as Definition 1.

Definition 1. (RDF Scheme) A RDF scheme is denoted by 3-tuple(RDF triple
scheme)),,(OPSR = , where:

 S is a set of subjects
 P is a set of predicates
 O is a set of objects

The information can be expressed as RDF scheme by Definition 1 as follows:

 R = {M1, M2,M3, M4, M5, M6}
= {(Puccini, compose, Tosca), (Puccini, opera, Tosca),

(Puccini, is-a, Composer), (Tosca, is-a, Opera),
(Tosca, Composer, Puccini),(Composer, Compose, Opera)}

Our method extracts all these original meanings when convert Topic map to RDF.

3.3 Overview of Conversion Model

Our method receives a Topic map as input and extracts a RDF as output. The
conversion method is composed of three parts. The first is the identifying part of
subject and object. The second is the selection part of predicate. The last is
the exception processing part to generate a complete RDF. The proposed conversion
model is defined as Definition 2.

Definition 2. (MA : Conversion Model Topic map to RDF)
MA(I, O, Mf), where:

 I : TMi (input)
 O: RDFi (output)
 Mf : (IE, SP, AE), where: (conversion function)

 - IE : a function of identifying subject and object
 - SP : a function to selecting predicate
 - AE : an exception processing rule

The specific rule set of conversion function Mf is composed of three sub-functions IE,
SP, and AE. IE is a function of identifying subject and object from Topic map.
This function creates pairs of subject and object: ()OS , .

Definition 3. (IE : a function of identifying subject and object)
 IE(IEi, IEo, IEr), where :

128 S. Shin, D. Jeong, and D.-K. Baik

 IEi : TMi (input)
 IEo : (Si, Oi) (output)
 IEr : a set of rules to identify subjects and objects

SP is a function to selecting predicate. The predicate defined between
Definition 3’s subject and object to make relations. RDF statements, ()OPS ,,

are created from this step. It is defined as Definition 4.

Definition 4. (SP: a function to selecting predicate)
SP(SPi, SPo, SPr), where :

 Spi : : IEi + : IEo (input)
 Spo : : (Si, Pi, Oi) (output)
 SPr : a set of rules to select predicates

AE is an exceptional processing rule (Definition 5) to create complete RDF

Definition 5. (AE : an exception processing rule)
AE(AEi, AEo, AEr), where : (function to process
exception)

 AEi : : SPo (input)
 AEo : : Ri(Si, Pi, Oi) (output)
 AEr : a exception processing rule

3.4 Conversion Algorithm

(1) Step 1. Identifying subject and object
In [1], RDF and Topic map are identity-based technologies. That is, the key concept
of them is "symbols" representing identifiable "things". In Topic map, the term for
"thing" is subject(topic) and in RDF, the term for "thing" is resource.
Therefore, Topics of Topic map can be converted into resources of RDF. All of
subject, object and predicate in RDF can be resources [7]. So Topic
in Topic map can be converted into subject or object.

A topic becomes a subject or an object in RDF according to its converting
direction because Topic map is a non-direction graph but RDF is a direction graph.
An association or a role can become a predicate of RDF. The roles also
become new resources(topics). A role becomes a subject or an object
in association relations between roles. And a role becomes an object of
Topic. This step is presented in Rule 1.

Rule 1. (Identifying subjects and objects from topics and roles of
Topic map)

 input TMi(ti, tj, ri, rj, a)
 select topics and roles from TMi
 convert topics and roles to subjects and objects
 (ti ≡ Si) → (tj ≡ Oi), where tj has an association relationship with ti

 (tj ≡ Sj) → (ti ≡ Oj), where ti has an association relationship with tj

 Conversion of Topic Map Metadata to RDF Metadata 129

 (ri ≡ Si) → (rj ≡ Oi), where ri and rj are connected with a same association
 (ti ≡ Si) → (ri ≡ Oi), where ri is a role of ti

 (tj ≡ Sj) → (rj ≡ Oj), where ri is a role of tj

 output set of (Si, Oi)

Fig. 4. Identify subjects and objects Fig. 5. Selecting predicates

(2) Step 2. Selecting predicate
The association and the role are correspondent to predicate of RDF
because they are represented as topic in Topic map. An association of Topic
map can be interpreted to two types. One is a predicate that expresses
association between topics and the other is a predicate between roles.
These are correspondent to Rule 2.

When a role is converted to a predicate, the role is determined according to
expressive direction. Subject corresponds to a expression target and object
corresponds to expression target’s value. For example, if t1 is subject and t2 is
object, r1 is selected as predicate.

Rule 2. (Selecting ‘a’ as predicate)
 input TMi(ti, tj, ri, rj, a), set of (Si, Oi)
 convert association as predicate
 (ti ≡ Si) ∩ (tj ≡ Oi) → (a ≡ pi), where ai is an association between ti and tj

 (ri ≡ Si) ∩ (rj ≡ Oi) → (a ≡ pj), where
 ri and rj are connected with a same association ai

 output RDF1(ti, a, tj), RDF2(rj, a, ri)

Rule 3. (Selecting ‘r’ as predicate)
 input TMi(ti, tj, ri, rj, a), set of (Si, Oi)
 convert roles as predicate
 (ti ≡ Si) ∩ (tj ≡ Oi) → (ri ≡ pi), where ri is a role of ti
 (tj ≡ Si) ∩ (ti ≡ Oj) → (rj ≡ pj), where rj is a role of tj
 output RDF3(ti, ri, tj), RDF4(tj, rj,, ti)

New predicates are needed to define relations between topics and roles.
Rule 4 creates the new predicates and is defined as follows:

(t1,p’,r1) (t2,p’’,r2)

(r1,a,r2)

a

r1 r2

t1
t2

p

o/s

s o

(t1,r1,t2)(t2,r2,t1)

p p
o o

s ss/o

P’’p’
(t1,p’,r1) (t2,p’’,r2)

(r1,a,r2)

a

r1 r2

t1
t2

p

o/s

s o

(t1,r1,t2)(t2,r2,t1)

p p
o o

s ss/o

P’’P’’p’p’

a

r1 r2

t1
t2

(t1,t2)(t2,t1)

o o

s s

s

s soo

o
(r1,r2)

(t1,r1) (t2,r2)

a

r1 r2

t1
t2

(t1,t2)(t2,t1)

o o

s s

s

s soo

o
(r1,r2)

(t1,r1) (t2,r2)

130 S. Shin, D. Jeong, and D.-K. Baik

Rule 4. (Selecting ‘newp’ as predicate)
 input TMi(ti, tj, ri, rj, a), set of (Si, Oi)
 create new predicates
 (ti ≡ Si) ∩ (ri ≡ Oi) → (newp’ ≡ pi), where ri is a role of ti
 (tj ≡ Sj) ∩ (rj ≡ Oj) → (newp’’ ≡ pj), where rj is a role of tj
 output RDF5(ti, newp’, ri), RDF6(tj, newp’’, rj)

Two issues are founded from these conversion rules’ outputs. Rule 2 creates RDF1(ti,
a, tj) and RDF2(rj, a, ri). These RDF1 and RDF2 generates a same relation between
topics and between roles. Rule 2 creates RDF1(ti, a, tj) and Rule 3 generates
RDF3(ti, ri, tj). These RDF1 and RDF3 create duplicated predicates between the
same topics.

It's an obstacle to make RDF binary relation. These problems come from relation
between topic and role where topic is an instance of role. To solve these
issues, an association is used only as predicate between roles and a
composed predicate, association.role is created to make more precise
predicate between topics. The above is refined as the Table 2.

Table 2. Refinement of issued results of RDF statements

Issued RDF statements Refined RDF statements

RDF1(ti, a, tj), RDF2(rj, a, ri)
 RDF1(ti, a, tj) -> change as a follow
 RDF2(rj, a, ri) -> select

 RDF1(ti, a, tj), RDF3(ti, ri, tj) RDF1(ti, a.ri, tj),-> refine as a more specific predicate

Rule 2 and Rule 3 are respectively substituted into Rule 2-1, Rule 3-1.

Rule 2-1. (Refining Rule 2)
 input TMi(ti, tj, ri, rj, a), set of (Si, Oi)

 convert association as predicate
 (ri ≡ Si) ∩ (rj ≡ Oi) → (a ≡ pj), where ri and rj are connected with same

association ai
output RDF2(rj, a, ri)

Rule 3-1. (Refining Rule 3)
 input TMi(ti, tj, ri, rj, a), set of (Si, Oi)
 compose association and role as predicate
 (ti ≡ Si) ∩ (tj ≡ Oi) → (a.ri ≡ pi), where ri is a role of ti
 output RDF1(ti, a.ri, tj)

(3) Step 3. Adding an exception rule
Through Rule 1 to Rule 4, Fig. 3 is converted RDF statements as follows:

 () ()2,,13,1,1.,22),2,2.,1(1 rarRtratRtratR , () ()2,'',25,1,',14 rnewptRrnewptR

 Conversion of Topic Map Metadata to RDF Metadata 131

Therefore, all meanings are extracted from the sample in Section 3.2. RDF has an
important property that must be considered. The topic, association and role of
Topic map express 'thing'. This 'thing' can be addressable resource that have URI or non-
addressable concept that expressed by literal(string) [14]. But, RDF's resource must have
URI, addressable resource[7]. Subject of RDF means resource. Therefore, RDF's
subject must become an addressable resource among of data elements of Topic
map. Object is resource or literal value, so all of addressable resources and non-
addressable concepts among of data elements of Topic map can become object of RDF.
A rule to solve this issue must be attached to the predefined conversion rule set because
the rule set prevent from convert of non-addressable concept to RDF subject.

Rule 5. (Exception rule to prevent converting non-addressable concepts to
subject)

 input TMi(ti, tj, ri, rj, a), set of candidate RDFi(Si, Pi, Oi)
 exclude (si,*,*), where :

 si is a literal
 output complete set of RDFi(Si, Pi, Oi)

3.5 Case Study

This section shows a case study to verify converting quality of the proposed method
with the sample in Fig. 3. The candidate pairs, (subject, object) are identified
by Rule 1. Topics and roles can become subjects or objects.
Candidate pairs (subject, object)

= {(Puccini,Tosca), (Tosca,Puccini), (Puccini,Composer),
 (Tosca,Opera), (Composer,Opera)}

Next, predicate elements are selected and added to the above subject-object
pairs. The roles and associations become predicates by Rule 2, Rule 3-1,
and Rule 4.

),,(OPSR = ={(Puccini,compose.opera,Tosca),

(Tosca,compose.composer,Puccini),
 (Puccini,is-a,Composer), (Tosca,is-a,Opera),

(Composer,compose,Opera)}

r1:Composerr1:Composer r2:Operar2:Opera

t1:Pussini t2:Tosca
a:compose.opera

a:compose.composer

a:compose

a’:is-a a’’:is-a

r1:Composerr1:Composer r2:Operar2:Opera

t1:Pussini t2:Tosca
a:compose.opera

a:compose.composer

a:compose

a’:is-a a’’:is-a

Fig. 6. Conversion result with the proposed method

Finally, an exclusion rule, Rule 5 must be added to prevent non-addressable
subject.

132 S. Shin, D. Jeong, and D.-K. Baik

4 Evaluation

4.1 Evaluation Model

Three evaluation criteria are used in our paper. The first is the loss rate of meanings
after conversion, and the second is the structural complexity of conversion results.
The last is the query efficiency about converted RDF tree.

Loss Rate of Meanings
The loss rate of meaning after conversion can be analized from the number of RDF
statements that is created from conversion results. The calculation model is as
follows:

 −
=

anoriginTMme

statextractRDFanoriginTMme
MLossMean)(,

where ΣextracRDFstat means Number of meanings from extracted RDF after
conversion; ΣoriginTMmean means Number of meanings from source Topic
map

Structural Complexity of Extracted RDF
A complexity of conversion results can be analized from the number of nodes and
arcs of converted RDF tree. It is also calculated as follows:

=
RDFnodeextractAll

RDFnodeextractNew
MCompx)(,

where ΣextractNewRDFnode is Number of new nodes from extracted RDF
after conversion; ΣextractAllRDFnode means Number of all nodes from
extracted RDF after conversion

Query Efficiency
Query efficiency is in inverse proportion of query processing time about converted
RDF tree. Query processing time can be decided by the number of arcs of RDF tree to
pass to find a value.

ssTimeQueryproce
QueryEff

1= ,

where QueryprocessTime : The Number of Arcs of RDF tree to pass to find answer.

4.2 Comparison with Related Research

[2] and [3] are used as comparison targets between related studies of Section 2 to
evaluate our method. [1] and [4] are excluded because these methods use the extended
vocabularies.

(1) Loss Rate of Meaning
[2]’s method is used as a comparison target about the number of extracted RDF
statements. Fig.3 has five meanings if the duplicated meanings are eliminated. In [2],

 Conversion of Topic Map Metadata to RDF Metadata 133

nodes of Topic map are mapped to resources of RDF and arcs of Topic map are
mapped to statements of RDF. Fig.7 shows the conversion result for the Topic map in
Fig. 3 by the method [2]. This method extracts only two RDF statements with priority
given to association.

Puccini T osca

com poser opera
C om pose

Puccini T osca

com poser opera
C om pose

Fig. 7. Result of Lacher’s method about Fig. 3. This is a conversion result for the Topic map in
Fig. 3 by the method [2].

On the other hand, our method extracts five RDF statements. The loss rates of
meaning of our method and [2]’s method are as follow:

LossMean(Our Method) =
5

55 − = 0.00, LossMean([2]’s Method) =
5

25 − = 0.60

Our method offers conversion that there is no loss of meaning. The difference of the
number of extracted RDF statements between [2]’method and our proposed method is
more increased accoding to Topic map’s volume as Fig. 8.

Fig. 8. Experiment result about the number of extracted RDF statements. Our method extracts
five RDF statements from Fig. 3 but [2]’ method extracts only two RDF statements.

(2) Structural Complexity of Extracted RDF
The method of [3] is used as a comparison target about the structural complexity of
converted RDF. [3] defined conversion relations between Topic map and RDF as
follows: RDF statement: association in Topic map; RDF identity:
SubjectIndicatorReference in Topic map; RDF resource: topic entity; RDF
subject: role playing topic (topic map); RDF object: role playing

5

10

15

20

25

2
4

6
8

10

0

5

10

15

20

25

30

1 2 3 4 5

of original Topic map meaning

of

 e
xt

ra
ct

ed
 R

D
F

 s
ta

te
m

en
ts

our method [2]'s method

134 S. Shin, D. Jeong, and D.-K. Baik

topic (topic map); RDF subject: role defining topic (topic map); RDF
object: role defining topic (topic map)

Fig. 9 shows the conversion result of Fig. 3. It contains seven RDF statements but
two RDF statements of them have no means and create three additional-unnecessary
nodes.

Assoc:1

Assocmember:2

tm-instanceOf

tm-topicassocmember

roledefiningtopic roledefiningtopic
roleplayingtopic roleplayingtopic

Assocmember:1 tm-topicassocmember

puccini composer tosca opera

compose

Assoc:1Assoc:1

Assocmember:2

tm-instanceOf

tm-topicassocmember

roledefiningtopic roledefiningtopic
roleplayingtopic roleplayingtopic

Assocmember:1Assocmember:1 tm-topicassocmembertm-topicassocmember

puccinipuccini composercomposer toscatosca operaopera

composecompose

Fig. 9. Result of Moore’s method about Fig. 3. This is a conversion result for the Topic map in
Fig. 3 by the method [3].

4

8

12

16

20

7

14

21

28

35

0

5

10

15

20

25

30

35

40

1 2 3 4 5

of original Topic map statements

of

 e
xt

ra
ct

ed
 R

D
F

no
de

s

our method [3]'s method

5

10

15

20

25

6

12

18

24

30

0

5

10

15

20

25

30

35

1 2 3 4 5

of original Topic map statements

of

 e
xt

ra
ct

ed
 R

D
F

 a
rc

s

our method [3]'s method

Fig. 10. Experiment result about the number of extract nodes and arcs

 Conversion of Topic Map Metadata to RDF Metadata 135

Our method creates four nodes and five arcs, but [3]’s method creates eight nodes
and seven arcs. Our method creates no new nodes among four nodes, but [3]’s method
creates three new nodes, Asso:1, Assocmember:1, Assocmember:2, among eight nodes
such appear in result of Section 4.1. [3] creates complicated result because of new
additional and unnecessary nodes. The complexity of each method is as follows:

 Compx(Our Method) = 0/4= 0.00, Compx([3]’s Method) =2/7= 0.29

The more Topic map’s volume increase, the more important this issue becomes. The
difference of the number extracted RDF nodes and arcs are more increased accoding
to Topic map’s volume as Fig. 10.

(3) Query Efficiency to Extract Knowledge
Let's assume a sample query: “Who is a composer of the Tosca?”. In case of our
method’s output Fig. 6, three steps take to find a correct node about this query.

Tosca
Compose.
composer PucciniTosca
Compose.
composer Puccini

Fig. 11. An automate expression to solve sample query in our method’s result tree

RDF has difficulty in backward search because of direction of arcs, but backward
search supposes possible thing in this paper to analize query stpes of other related
researches. [2]’s conversion requires four steps as Fig. 12 for precess the query.

Tosca Compose Composer PucciniTosca Compose Composer Puccini

Fig. 12. An automate expression to solve sample query in [2]’s method result tree

Fig. 9, the RDF that is converted from [3] passes six steps as Fig. 13 for the query.

Tosca Assocmember2 Assoc:1

Assocmember1ComposerPuccini

Tosca Assocmember2 Assoc:1

Assocmember1ComposerPuccini

Fig. 13. An automate expression to solve sample query in [3]’s method result tree

The query efficiency of each method is as follows: Queryeff(Our Method) = 1/3 =
0.33; Queryeff([2]’s Method) = 1/4 = 0.25; Queryeff([3]’s Method) = 1/6 = 0.17. The
difference of query efficiency is more increased accoding to Topic map’s volume as
Fig. 8.

136 S. Shin, D. Jeong, and D.-K. Baik

0.33

0.66

0.99

1.32

1.65

0.25

0.5

0.75

1

1.25

0.17
0.34

0.51
0.68

0.85

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5

of query

qu
er

y
ef

fi
ci

en
cy

our method

[2]'s method

[3]'s method

Fig. 14. Query efficiency experiment result

4.3 Discussion

The evaluation results in Section 4.2 show the efficiency of our method. 1) Our
method extracts five RDF statements but [2]’s method extracts two RDF statements
about Fig. 3. It means that our method offers more efficient conversion than [2] in
terms of loss rate of meaning. 2) Our method creates four nodes and five arcs, but
[3]’s method creates eight nodes and seven arcs. Therefore, our method offers more
clear conversion than [3] in terms of complexity of extracted RDF results. 3) Our
conversion requires passes three steps to find correct node about the query of Section
4.2’s (3). [2]’s method passes four steps and [3]’s method passes six steps about same
query. It also shows that our method is more efficient about query efficiency.

Table 3. Evaluation Results of Section 4.2

Items
Methods Loss rate Complexity Query Efficiency

Proposed method Low (0.0) Low (0.0) High (0.33)

[2]’s method High (0.6) - Middle (0.25)

[3]’s method - High (0.29) Low (0.17)

5 Conclusions and Future Work

This paper proposed a method to convert topic map to RDF for interoperability
between both that are leading standard techniques to describe Web metadata. Our
method is based on semantics and relations between resources. There are some loss of
meanings in existent methods when convert topic map’s n-ary relation to RDF’s
binary relation. However, our method converts possible all relations of topic map to
RDF binary relations, minimizing loss of meanings. Proposed method recognized
roles as important subjects and converted all relations and meanings of roles
to RDF. It can contribute to promote of effective management and usage of
information resources in the semantic web.

 Conversion of Topic Map Metadata to RDF Metadata 137

The Semantic web is composed of RDFS and OWL with RDF for more detailed
expression of metadata. Therefore, it is needed to study on a relation of Topic map
and RDF scheme, and OWL. Our method will be adapted to more complex Topic
map instances. It will help a formalization of our method to consider various Topic
map types.

A study on automatic conversion tool is also required. One solution to solve this
issue is to use XSLT. XSLT provides the conversion between different file formats.
Our method will be more formalized and implemented by XSLT script.

References

1. Garshol, L.M., Living with topic map and RDF, Proceeding of XML Europe 2003 (2003)
2. Lacher, M.S. and Decker, S., On the Integration of Topic Maps and RDF Data, Proceeding

of Semantic Web Workshop (2001)
3. Moore, G., RDF and Topic Map-An Exercise in Convergence, Proceeding of the XML

Europe 2001 Conference (2001)
4. Ogievetsky, N., XML Topic Map through RDF Glasses, Journal of Markup Languages :Theory

and Practice Vol.3. Issue3, MIT press (2001)
5. Lacher, M.S. and Decker, S., RDF, Topic Map, and the Semantic Web, Journal of Markup

Languages:Theory and Practice, Vol. 3, Issue 3, MIT press (2001)
6. Garshol, L.M., RTM: An RDF-to-TM mapping, http://psi.ontopia.net/rtm
7. Resource Description Framework(RDF) :Concepts and Abstract Syntax, W3C

Recommendation (2004)
8. RDF Vocabulary Description Language 1.0: RDF Schema, W3C Recommendation, (2003)
9. OWL Web Ontology Language series, W3C Recommendation (2003)

10. The Standard Application Model for Topic map, ISO/IEC JTC1 SC34 N0396 (2003)
11. Topicmap.net’s Processing Model for XTM 1.0, http://www.topicmap.net/pmtm4.htm, (2001)
12. ISO/IEC 13250 Topic Map : Information Technology Document Description and Processing

Languages, ISO/IEC JTC1 (1999)
13. XML Topic Map (XTM) 1.0, http://www.topicmap.org/xtm/1.0/, TopicMap.Org (2001)
14. Prudhommeaux, E. and Moore G., RDF and Topic Map Mapping, http://www.w3.org/

(2002)

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 138 – 155, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Integrated Software Development Environment
for Web Applications

Byeongdo Kang

School of Computer and Information Technology,
Daegu University, Republic of Korea

bdkang@daegu.ac.kr

Abstract. In recent years, the World Wide Web has become an ideal platform
for developing Internet applications. World Wide Web service and application
engineering is a complex task. Many web applications at present are large-scale
and involve hundreds or thousands of web pages and sophisticated interactions
with users and databases. Thus, improving the quality of web applications and
reducing development costs are important challenges for the Internet industry.
One way to resolve the difficulty is to provide web application developers with
an integrated development environment. In this paper, I propose an efficient
methodology and development environment for web application programs. This
environment includes a design model to represent data and navigational struc-
ture, a modeling language for the notation technique of the design model, and a
process model to define development stages.

1 Introduction

As the technologies of networks and the Internet improve rapidly, most software at
present is being developed for World Wide Web[1] applications. Therefore, time and
efforts are also on the rise as the size and complexity of web applications continue to
increase. By reason of these managerial and technical issues, many researchers are
studying web engineering. The goals of web engineering are to improve the quality
and productivity of web applications[2]. One way to accomplish this is to provide
web application developers with an integrated development environment.

The development environments for web applications can be built to a certain degree
on software engineering environments. Designing the conceptual data model and ab-
stract navigational model can benefit directly from software engineering approaches.
However, differences in fundamental characteristics of applications make a direct trans-
position of techniques difficult. Large web applications containing many documents and
complex interactive services need a more sophisticated engineering approach[3, 4]. Web
application engineering is a complex task and comparable with the software engineering
process. Web page and document editors that are similar to CASE(Computer-Aided
Software Engineering)[5] environments are successful products.

A web application is an information system based on web and hypermedia technol-
ogy. The large information system requires a development methodology and a set of
tools for its development processes. There has been much research and development
on methodologies and tools in web applications. These works lay emphasis on

 An Integrated Software Development Environment for Web Applications 139

hypertext data model and characteristics such as information structure, navigation
behavior, and presentation of structure and navigation. However, most of the previous
works are for specific hypertext application domains and do not present how their
methods and models can be adapted to different domains[6].

In this paper, I will present a development environment including a software proc-
ess model for general web applications. The goal of this environment is to improve
the quality and productivity of software. I will propose a process model for web ap-
plications and provide an integrated environment for the development phases from
analysis through implementation. The documents from the analysis and design phases
are used for generating the skeleton of source codes. Therefore, this environment
helps developers to reduce the errors in the analysis and design phases and to improve
the quality and productivity of web applications.

This paper is organized as follows. Section 2 introduces the general characteristics
and architecture of World Wide Web applications. In Section 3, I explain briefly the
previous related works in development methodology for web applications. In Section
4, I present the development methodology and functional structure of a web applica-
tion development environment. Finally, I come to a conclusion with a summary in
Section 5.

2 World Wide Web(WWW) Applications

Because of the rapid growth of the Internet, the World Wide Web has been the most
popular platform for developing Internet applications. Since HTTP protocol[7] and
the first WWW servers were introduced, a great number of computers and web serv-
ers have been connecting and are offering multimedia information. Web applications
that are simply showing static HTML pages[8] are already outdated, and multimedia
contents and active components are very popular.

2.1 Characteristics of Web Applications

Modern web applications are described as a hybrid between a hypermedia[9] and an
information system. The integration of heterogeneous information, universal access
by users, and real-time responses make web applications highly complex. Because of
this hybrid structure, we should consider a number of the technical and managerial
requirements of web applications[10]:

• Contents: The contents included in the web application may consist of static me-

dia(e.g., formatted data, text strings, images, and graphics) and active media(e.g.,
video clips, sound tracks, and animations).

• Structure: The organization of data contents.
• Navigational Interfaces: How users interact with individual pieces of information

and move among them.
• Presentation: How web application contents and functions are shown to users.
• Dynamic Data Integration: The customization and flexible adaptation of content

structure, data update, navigation interfaces, and presentation styles.

140 B. Kang

• Multilingual Concepts: International web applications are required to offer their
contents in several languages.

• Evolution and Maintenance: Changes of requirements may cause the revision of
web applications.

In addition to the above-mentioned requirements, we should consider the issues of

security, scalability, and interoperability.

2.2 Architecture of Web Applications

The software architecture is one of the important factors in design and implementa-
tion and reflects the spatial arrangement of application programs and data. The mini-
mal spatial configuration of a web application is the so-called two-tier architecture,
shown in Fig. 1, which closely resembles the traditional client-server paradigm. Cli-
ents have web browsers and lightweight applications that are responsible for render-
ing the contents. Application programs and data reside on the server side. A more
advanced configuration, called three- or multi-tier architecture shown in Fig. 2, sepa-
rates the application programs from data. More tiers insure the scalability, reliability,
security, and better performance of architecture[11].

Fig. 1. Two-tier architecture

Web applications provide users with a graphic interface including a web browser.
Users can communicate with web applications by entering commands for requesting
what they want and receiving the results of the request. Web applications usually
operate in the order of the following steps[12]:

• Step 1. Users enter commands and data into the user interface to request services on

the web server. The user’s commands are called query.
• Step 2. As soon as the input of the commands and data to the user interface is com-

plete, the query is sent to a web server.
• Step 3. The web server processes the user’s query using its application program. If

the query processing needs data on the data server, the application program of the
web server accesses the repository in the data server.

• Step 4. The results of the processed query are returned to the client.

User Interface

- Web Browser
- Tools for presenting contents

Client

User

Repository

Application
Program

Server

 An Integrated Software Development Environment for Web Applications 141

• Step 5. The data returned to the client is displayed through the user interface. The
display may be as simple as interpreting HTML or as complex as performing calcu-
lation or manipulation of data.

Fig. 2. Three-tier architecture

3 Related Works

Web engineering is a research field of which the goal is applying the technologies of
software engineering to the development of web applications. Standard development
methodologies and project management in software engineering can be applied to
developing web applications. But researchers consider web engineering an emerging
field. The early stage of study on web engineering was concerned with developing a
good graphic user interface for web sites. Today, system and navigation structure are
of great importance to the logical design for web applications.

The previous methods can be classified into five categories[13]: object-oriented
approaches, entity-relationship approaches, component-based approaches, hybrid
approaches, and open hypermedia approaches. In this section, I will introduce an
overview of the popular related research on hypertext or hypermedia design environ-
ment and explain briefly their different methods.

3.1 HDM(Hypertext Design Model)

The hypertext design model(HDM)[14, 15] is a first towards defining a general pur-
pose model for hypertext development. Some of the most innovative features of HDM
are the notion of perspective, the identification of different categories of links with
different representational roles, the distinction between hyperbase and access struc-
tures, and the possibility of easily integrating the structure of a hypertext application
with its browsing semantics. HDM provides useful design primitives such as entities
to represent information elements and three categories of links to connect the infor-
mation elements together.

User Interface

- Web Browser
- Tools for presenting contents

Client

User

Repository

Application
Program

Server

Data Server

142 B. Kang

An HDM application consists of structures of information chunks called entities.
Entities denote a physical or conceptual object of the domain and are grouped by
entity types. An entity is the smallest autonomous piece of information that can be
introduced or removed from an application, meaning that its existence is not condi-
tioned by the existence of other information objects.

An entity is a hierarchy of components. Components are in turn made of units. In
HDM, only entities are autonomous while components and units are not. Each unit
shows the content of a component under a particular perspective. In hypertext applica-
tions, the same topic needs to be presented in several alternate ways. HDM provides
the concept of perspective for the same content that needs to have multiple presenta-
tions.

HDM information structure can be interconnected by links. HDM provides three
categories of links for designers. Structural links connect together components be-
longing to the same entity. Perspective links connect together the different units that
correspond to the same component. Application links denote arbitrary domain-
dependent relationships among entities or components and are chosen by the designer.
All perspective links and most structural links do not need to be defined explicitly by
the designer because they can be derived automatically from the structure of entities.
Application links are organized into link types. An application type is specified with a
name, a pair of source and target entity types, and a symmetry attribute.

An HDM specification of a hypertext application consists of defining a schema and
a set of instances. A schema definition specifies a set of entity types and link types.
Instances can be inserted into the application only if they obey the constraints speci-
fied in the schema. Access structures provide readers with entry points to directly
access information structures in an instance of a schema.

According to HDM terminology, a hypertext application can be divided into two
portions: a hyperbase and a set of access structures. The hyperbase represents the core
of the application. It consists of entities, components, units, and links. The purpose of
access structures is to allow the reader to properly select the entry points for further
navigation.

The actual use of a hypertext application is defined by its browsing semantics. The
browsing semantics specify how information structures are visualized to the readers
and how they can navigate across information structures.

3.2 OOHDM(Object-Oriented Hypermedia Design Method)

The object-oriented hypermedia design method(OOHDM)[16] is a direct descendant
of HDM. It differs from HDM in its object-oriented nature in that it includes special
purpose primitives for both navigational and interface design. OOHDM is a model-
based approach for building hypermedia applications. It comprises four different
activities: conceptual design, navigational design, abstract interface design, and im-
plementation. These activities are performed in a mixed pattern of incremental, itera-
tive, and prototype-based development. During each activity except implementation, a
set of object-oriented models[17] are built or enriched from previous iterations.

During conceptual design, a model of the application domain is built with object-
oriented modeling principles, augmented with some primitives such as attribute per-
spectives and subsystems. Conceptual classes may be built with aggregation and

 An Integrated Software Development Environment for Web Applications 143

generalization/specialization hierarchies. The main concern during this step is to cap-
ture the domain semantics as neutrally as possible. The product of this step is a class
and instance schema built out of subsystems, classes, and relationships.

In order to have an application that can be utilized by users who want to accom-
plish a certain set of tasks, it is necessary to reorganize the information in the concep-
tual model. In OOHDM, this is achieved by defining a navigational model that is a
view of the conceptual model. Different navigational models may be built from the
same conceptual schema for different sets of users and tasks.

Navigational design is expressed with two schemas, the navigational class schema
and the navigation context schema. The navigation class schema defines the navigable
objects of a hypermedia application. The classes reflect the view chosen over the
application domain. In OOHDM, there is a set of predefined types of navigational
classes: nodes, links, and access structures. Nodes are defined as object-oriented
views of conceptual classes during conceptual design. Links reflect relationships
among nodes and are also defined as views on relationships in the conceptual schema.
Access structures represent possible ways of accessing nodes.

Once the navigational structure has been constructed, the abstract interface model
is defined. A clean separation between navigational and abstract interface design en-
ables the building of different interfaces for the same navigational model and provides
a higher degree of independence in the user interface.

To obtain a running system, the designer has to map the navigational and abstract
interface models into concrete objects available in the chosen implementation envi-
ronment. The models can be implemented in a straightforward way by using many of
the hypermedia platforms such as Hypercard, Toolbook, Director, and HTML.

3.3 RMM(Relationship Management Methodology)

One data modeling approach is the entity-relationship(ER) model[18]. The ER model
is suitable for modeling simple and small-scale hypermedia applications. The rela-
tionship management methodology(RMM)[19, 20, 21] models hypermedia applica-
tions by using the ER approach and represents an application with links among enti-
ties and the attributes of entities. RMM provides a computer-aided environment called
RMCase[22] that includes a structured design methodology for the development and
maintenance of a large class of hypermedia applications.

RMM has three different levels for modeling a web application. At the top, the
presentation level deals with how the information is presented. Hyperlinks and infor-
mation that groups together or separates are selected for presentation units such as
web pages at this level. The storage level describes how information is organized
physically. Between the storage and presentation level, the logical level maps the
information in the storage level of web servers onto the actual web pages seen by
users in the presentation level. Graphic designers who are interested in screen format
work at the presentation level. System developers are more interested in the physical
storage level. RMM provides a modeling language to represent the information do-
main and navigational structure of web applications at the logical level.

RMM provides developers with a design process. The developer begins with a re-
quirements analysis to determine what the information domain is, what the applica-
tion will do, who will use the application, and how the users will use the application.

144 B. Kang

Next, the developer creates the ER diagram to model the information structure of the
application. The following step involves designing the application diagram in a top-
down fashion. The application diagram depicts the entire application and embraces
both a top-down and a bottom-up approach. Then the developer decomposes the ap-
plication diagram into its building blocks called m-slices and designs each one sepa-
rately. The function of the m-slice is to combine elements from any entities in the ER
diagram. By combining all the m-slices, the developer generates the application dia-
gram in bottom-up fashion and then compares the two versions, thereby debugging
and refining the diagram in an iterative fashion. After the m-slices and application
diagram are reconciled with each other, the developer designs the user interface and
implements the design models.

 4 The Web Application Development Environment(WDE)

In this section, I will present a web application development environment(WDE). The
WDE provides a methodology for web applications and a tool environment specifi-
cally tailored for the methodology.

4.1 WDE Methodology

Even though HDM defines useful design primitives, it is deficient in extensibility and
flexibility because it only provides a static set of structures of information chunks and
link types. HDM provides design models but does not define a process model for
design stages. The main advantage of RMM is the use of a simple ER design ap-
proach. However, it seems better suited for simple or small-scale applications. It can-
not support applications that require complex structures among information items
because it has difficulty handling the large number of entities in the large document.
If a large document needs to be updated, the designer must repeat the steps of the
navigation design to update the content of the hypermedia developed by the RMM.
OOHDM seems to be suited for most of the application types. Although it has been
used for developing several hypermedia applications[23], OOHDM lacks a complete
implementation environment.

In general, a web application is described with three different design parts[24]:

• Structure: Describing the organization of the information that forms the application
• Navigation: Specifying the actions for moving across the application contents and

accessing information
• Presentation: Defining the way that application contents are displayed to the users

and the users can interact with an application.

In order to develop a web application, designers have to design the three require-
ments specifications of structure, navigation, and presentation. The WDE provides
designers with a methodology including the following:

• A design model to describe the application precisely
• A modeling language that is the notation technique for the design model
• A process model to define the sequence of development phases.

 An Integrated Software Development Environment for Web Applications 145

The design model of WDE consists of three main diagrams: the architecture design
diagram, the navigation design diagram, and the page detail design diagram. The
contents of the diagrams are expressed in the modeling language. All of the design
activities in each development step are defined in the process model.

For describing the structure of an application, the WDE provides modeling primi-
tives to design the types of information components that constitute an application and
semantic relationships among components. The structure of an application in WDE is
described in the architecture design diagram. The architecture design diagram consists
of various components and connectors representing semantic relationships.

The modeling primitives for designing the navigation express the various ways of
exploring and moving among information components within a web application. The
navigation model in WDE is described in the navigation design diagram. The naviga-
tion design diagram represents the relationships among web pages.

To display visual information through the application interface, a presentation
model is developed. The basic unit of presentation is a web page. A web page in-
cludes the information about the layout and data contents of an application. The speci-
fications of web pages in WDE are described in the page detail design diagram.

4.2 Functional Structure of WDE

The WDE supports development activities from analysis through implementation
phases for web application programs. The WDE consists of three main functional
modules: graphic editors, transformers, and a source code generator. Fig. 3 shows the

Fig. 3. The Functional Structure of WDE

Analysis Design Implementation Testing

Process Model

Graphic User Interface

Source Code
Generator

Graphic
Editors

Transformers

Modeling Language

Repository

146 B. Kang

functional structure of WDE. Graphic editors provide the diagramming notations to
represent the design model for the data and navigational structure for web applica-
tions. The contents of diagrams are described through a web modeling language used
by the transformer. The web application modeling language(WML) is used to store
the semantics of the diagrams. The design model is finally transformed into the source
codes for web programs.

Graphic Editors. Designers have to develop data and functional structures from the
requirements specifications of web applications. In analysis and design phases, they
need graphic tools to draw diagrams in terms of the predefined graphic notations. The
graphic notations are based on components and connectors in WDE. Designers can
define components, attributes, and relationships between components.

The WDE provides three kinds of diagrams: the architecture design diagram, the
navigation design diagram, and the page detail design diagram. The architecture de-
sign diagram represents the overall structure of web applications to be developed. The
navigation design diagram represents the navigation relationships between web pages.
The page detail design diagram represents the detail contents of web pages. The pro-
ject for one web application consists of one architecture diagram, one navigation
design diagram, and one or more page detail design diagrams.

Transformers. The graphic diagrams are described in WML before they are stored
into the repository. The WML formalizes the contents such as components, connec-
tors, and attributes in the diagrams. To show the diagrams in the repository, graphic
editors retrieve information about diagrams from the repository. Transformers help
the translation between graphic editors and the repository.

The Source Code Generator. The source code generator automatically produces the
skeleton of executable codes for the web pages from the analysis and design informa-
tion in the previous phases. To produce web pages, the code generator uses the

Fig. 4. The Graphic User Interface of WDE

 An Integrated Software Development Environment for Web Applications 147

information about the diagrams including the components, the attributes of compo-
nents, and the relationships between components. Application developers can add
additional functions to the skeleton of source codes. The WDE generates the codes of
scripts, applets, and ActiveX for web programs.

Fig. 4 shows the graphic user interface of WDE. This figure shows the windows for
editing diagrams, code generation, and other development activities.

4.3 Development Process Model of WDE

The development process model for web applications includes six phases: require-
ments analysis, architecture design, navigation design, page design, code generation,
and implementation and testing. Fig. 5 shows the entire development cycle of WDE.
This process model is iterative between phases to support feedback. The iterative
feedback improves the design quality through recursive review and evaluation.

Requirements Analysis. Developers define the goals and functions of the web appli-
cation. The purpose of the requirements analysis phase is to analyze the application
domain through the viewpoint of users. Therefore, the communication between de-
velopers and users is very important. The success or failure of a project is dependent
on the degree of understanding the user’s requirements.

In this phase, developers define the target users who will use the web application.
They also analyze the content and functions required, constraints, and who is going to
provide the new content. The product of this phase is requirements specification.

Fig. 5. The Development Process Model of WDE

Implementation and Testing

Code Generation

Page Design

Navigation Design

Requirements Analysis

Architecture Design

148 B. Kang

Architecture Design. Developers determine the most suitable architecture according
to the result of the requirements analysis phase. Developers divide the application
domains into sub-applications. Well-defined architecture can reduce the complexity
of the system and provide the work boundaries for developers. The product of this
phase is the architecture design diagram.

Navigation Design. Developers define navigation relationships between web pages of
the web applications. The navigation relationship includes the link relationship and
data migration between the web pages and makes the web applications different from
general applications. The web application program generally consists of more than
one web page. Users of web applications navigate the web pages to retrieve some
information or to accomplish what they want to do. The product of this phase is the
navigation design diagram.

Page Design. Developers design the screen layouts and functions for each of the web
pages. The web pages can be classified into static pages and dynamic pages according
to their functions. The function of static pages is to show their contents. The function
of dynamic pages is to accomplish tasks such as data processing or accessing data-
bases. The products of this phase are page detail design diagrams.

Code Generation. The source code generator in WDE produces the skeleton of
source codes for web pages. The source code generator uses the information about
analysis and design specifications developed in the previous phases. To make the
source codes complete and executable, developers can refine the skeleton of source
codes generated from the code generator.

Implementation and Testing. The analysis and design specifications can be imple-
mented in a straightforward manner by programming all of the page detail design
diagrams. Above all, developers have to establish the directory structures and file
naming conventions for version control. The application contents, such as text, graph-
ics, or video clips, and the web site must be prepared before being tested and evalu-
ated. After launching the web application, some faults and errors may occur during
operation. Developers have to correct malfunctions, adopt new functions, or adapt
new operation environments continuously.

4.4 Notations

The WDE provides web developers with two main notations-the component and the
connector-for modeling analysis and design diagrams. Components represent the func-
tional modules of the system while connectors represent the interactions between com-
ponents. Fig. 6 displays the notations of the diagrams for modeling web applications.

Components in the diagrams include the architecture component, the page compo-
nent, the passive component, the active component, the database component, the
group component, and the condition component.

The architecture component is used to represent the structure of web applications in
the architecture diagram and represents a function of a web application. The page
component represents a web page in the navigation design diagram. The passive com-
ponent represents a static functional module. The active component represents a
dynamic module. The database component represents a data repository. The group

 An Integrated Software Development Environment for Web Applications 149

component can be used to combine a set of components into one group of functions.
The condition component is used to specify a condition. All of these components are
used in the page detail design diagram.

Connectors in the diagrams include the general link, the indirect link, the direct
link, the data link, the DB link, and the sequence link.

The general link represents the existence of any relationships between two compo-
nents in the architecture design diagram. The indirect link and the data link represent
the transitions occurred by a user’s clicking on a button. The indirect link does not
contain the data transmission between two components. But the data link contains the
data transmission between two components. The direct link represents an automatic
page link in the program. The DB link represents a data transmission between a func-
tional module and a database. The sequence link represents the sequence of the acti-
vation of components. The DB link and the sequence link are used in the page detail
design diagram.

Fig. 6. Graphic Notations for Design Diagrams

4.5 Diagrams

The WDE provides developers with the following three kinds of diagrams to analyze
and design a web application program:

• The architecture design diagram
• The navigation design diagram
• The page detail design diagram.

The Architecture Design Diagram. The architecture of software is defined by com-
putational components and interactions among components. The well-defined struc-
ture makes it easy to integrate and maintain the parts of a large web application. The
architecture design diagram shows the vertical and horizontal structure between

150 B. Kang

functions of web applications and does not include the information about the detail
algorithms. This diagram is concretized in the navigation design diagram and the page
detail design diagram.

Fig. 7 shows an example of the architecture design diagram. This figure is the ar-
chitecture design diagram for the log-in function. The log-in function includes three
computational components: Register, Success, and Failure. The component Register
processes the enrollment of users and keep data for users. The two components, Suc-
cess and Failure, process the validation of users. The architecture design diagram
includes architecture components and general links. The attributes of components and
connectors are also defined separately.

Main

Register Login

Success Failure

Main

Register Login

Success Failure

Fig. 7. The Architecture Design Diagram

The Navigation Design Diagram. The most important characteristic of web applica-
tions is the navigation feature. Because web applications consist of web pages, users
of web applications have to explore web pages to search for information or accom-
plish what they want to do.

Form

Login.html

Home

Index.html

Function

Check.asp Message

Success
.html

Message

Failure
.html

Form

Register
.html

Function

Register
.asp

Form

Login.html

Form

Login.html

Home

Index.html

Home

Index.html

Function

Check.asp

Function

Check.asp Message

Success
.html

Message

Success
.html

Message

Failure
.html

Message

Failure
.html

Form

Register
.html

Form

Register
.html

Function

Register
.asp

Function

Register
.asp

Fig. 8. The Navigation Design Diagram

The navigation design diagram represents the navigation among web pages. It
shows the link relationships and data transformation between web pages. Fig. 8 shows
the navigation design diagram for the architecture design diagram in Fig. 7. Fig. 8.
represents the navigation relationships between web pages for the log-in function by

 An Integrated Software Development Environment for Web Applications 151

using the page component, the indirect link, the direct link, and the data link. The
attributes of components and connectors are also defined separately. The component
in this diagram is concretized in the page detail design diagram.

The Page Detail Design Diagram. The page detail design diagram represents each
web page in detail. The web pages are classified into static pages or dynamic pages
according to their tasks. Some pages may include the characteristics of both.

The static pages display their contents and are described by the design patterns. On
the other hand, the dynamic pages perform tasks and are described by the functional
flows to represent the algorithms for the tasks.

(a) The Design Patterns

ID=txtID
Passwd=txtPasswd

Database Result
Link

Success.html

Link
Failure.html

[Select]
ID & Passwd

Result
Exist

Null

ID=txtID
Passwd=txtPasswd

Database Result
Link

Success.html

Link
Failure.html

[Select]
ID & Passwd

Result
Exist

Null

(b) The Functional Flows

Fig. 9. The Page Detail Design Diagram

Fig. 9 shows the page detail design diagram for Fig. 8. Fig. 9(a) is an example of
the design patterns of the static page, Login.html. Fig. 9(b) represents the functional
flows of Check.asp and includes the passive component, the active component, the

<INPUT>

Type=text

<INPUT>

Type=password

<LABEL>

Value=”PASSWD : ”

<LABEL>

Value=”ID : ”

<INPUT>

Type=submit

<Form>
Action : Check.asp
Method : post

<INPUT>

Type=text

<INPUT>

Type=text

<INPUT>

Type=password

<INPUT>

Type=password

<LABEL>

Value=”PASSWD : ”

<LABEL>

Value=”PASSWD : ”

<LABEL>

Value=”ID : ”

<LABEL>

Value=”ID : ”

<INPUT>

Type=submit

<INPUT>

Type=submit

<Form>
Action : Check.asp
Method : post

152 B. Kang

database component, the group component, the condition component, the DB link,
and the sequence link.

4.6 Web Application Modeling Language(WML)

The WML describes the information about the contents and semantics of design dia-
grams. The WML description is automatically generated from the diagrams by trans-
formers. All of the design diagrams are described by WML. The contents of these
descriptions are then stored into the repository.

Fig. 10 shows the WML description of the architecture design diagram in Fig. 7.

<Diagram Type="ArchitectureDesignDiagram" Name="archBoard">
 <Component Type="ArchitectureComponent" Order="1" x="70" y="10" width="50" height="30">
 Name = "ac1"
 Caption = "List"
 Comment = "Start Page & List"
 </Component>
 <Component Type="ArchitectureComponent" Order="2" x="40" y=100" width="50" height="30">
 Name = "ac2"
 Caption = "Read"
 Comment = "Read"
 </Component>
 <Component Type="ArchitectureComponent" Order="3" x="100" y="100" width="50" height="30">
 Name = "ac3"
 Caption = "Write"
 Comment = "Write"
 </Component>
 <Connector Type="GeneralConnector" Order="4" x1="85" y1="40" x2="105" y2="40'>
 Name = "cnt1"
 Relation = "ac1 ac2"
 </Connector>
 <Connector Type="GeneralConnector" Order="5" x1="65" y1="100" x2="125" y2="100">
 Name = "cnt2"
 Relation = "ac1 ac3"
 </Connector>

</Diagram>

Fig. 10. Diagram Contents described by WML

4.7 Web Page Generation

A web application program consists of many web pages. The source code generator
produces the skeleton of the web pages from the diagrams developed in analysis and
design phases. In order to produce web pages, the code generator references the in-
formation about the diagrams from the repository. The WDE supports the codes of
scripts, applets, and ActiveX for web programs.

Fig. 11 shows the source codes generated automatically from the diagrams of Fig.
9. Fig. 11(a) and Fig. 11(b) are generated from Fig. 9(a) and Fig. 9(b), respectively.

 An Integrated Software Development Environment for Web Applications 153

<html>
<head>
</head>
<body>

<form action="Check.asp" method="post" name="frmLogin">
<center>

ID :
<input type="text" name="txtID" maxlength="10" size="10">

PASSWD :
<input type="password" name="txtPasswd" maxlength="10" size="10">

<input type="submit" name="smOK" value="register">
</center>
</form>

</body>
</html>

(a) Login.html

<%
Id = Request.Form("txtID")
Passwd = Request.Form("txtPasswd")
Set Dbcon = Server.CreateObject("ADODB.Connection")
Dbcon.Open ("DSN=entrance;UID=sa;PWD=")
SQLString = "Select Id From entrance where Id='" & Id & "'
and Passwd='" & Passwd & "'"
Set Result = Dbcon.Execute(SQLString)
if Result.EOF then
Response.Redirect("Failure.html")
Dbcon.Close
Set Dbcon = Nothing
else
Response.Redirect("Success.html")
Dbcon.Close
Set Dbcon = Nothing
end if

 %>

(b) Check.asp

Fig. 11. Source Codes in the Log-in Web Page

5 Conclusion

The rapid growth of the Internet makes the World Wide Web the most popular plat-
form for developing Internet applications. Because of this, the size and complexity of
web applications continue to increase. There has been much research and develop-
ment on the methodologies and tools in web applications. However, most of the pre-
vious works are for specific hypertext application domains and have not presented
how the methods and models can be adapted to different domains. One way to tackle

154 B. Kang

this problem is to provide web application developers with an integrated development
environment.

In this paper, I presented a web application development environment(WDE). The
WDE helps developers to reduce the errors in the analysis and design phases and to
improve the quality and productivity of web applications. It also provides a method-
ology for web applications and a tool environment specifically tailored for the meth-
odology. This methodology includes a design model, a modeling language, and a
process model. The design model of WDE consists of three main diagrams: the archi-
tecture design diagram, the navigation design diagram, and the page detail design
diagram. The contents of the diagrams are expressed in the modeling language. The
process model includes six phases: the requirements analysis, the architecture design,
the navigation design, the page design, the code generation, and the implementation
and testing. The tool environment of the WDE supports development activities from
analysis through implementation phases for web application programs. The WDE
consists of three main functional modules: graphic editors, transformers, and a source
code generator. Graphic editors provide the diagramming notations to represent the
design model for the data and navigational structure for web applications. The con-
tents of diagrams are converted to the web modeling language by transformers. The
design model is finally transformed to the source codes for web programs. The source
code generator produces the skeleton of the web pages from the diagrams developed
in analysis and design phases.

Acknowledgement

This research is supported by Daegu University.

References

1. Berners-Lee, T., Cailliau, R., Loutonen, A., Nielsen, H. F., Secret, A.: The World Wide
Web. Communications of the ACM, vol. 37, no. 8. (1994) 76-82

2. Powell, T. A., Jones, D. L., Cutts, D. C.: Web Site Engineering: Beyond Web Page De-
sign. Prentice-Hall. (1998)

3. Nanard, J., Nanard, M.: Hypertext Design Environments and the Hypertext De-
sign Process. Communications of the ACM, vol. 38, no. 8. (1995) 49-56

4. Schranz, Markus W.: Engineering Flexible World Wide Web Services. Proceedings of the
1998 ACM Symposium on Applied Computing. Atlanta, Georgia, United States. (1998)
712-718

5. Rock-Evans, R.: CASE Analyst Workbenches. Ovum. (1989)
6. Lowe, B. D., Webby, R. G.: Improving Hypermedia Development: a Reference Model-

Based Process Assessment Method. Proceedings of the tenth ACM Conference on Hyper-
text and Hypermedia, Darmstadt, Germany. (1999) 139-146

7. Berners-Lee, T., Fielding, R. T., Nielsen, H. F.: Hypertext Transfer Protocol. World Wide
Web Consortium, Informational RFC 1945, http://www.w3.org/Protocols (1996)

8. Berners-Lee, T.: HyperText Markup Language(HTML). World Wide Consortium,
http://www.w3.org/MarkUp/. (1993)

 An Integrated Software Development Environment for Web Applications 155

9. Nielsen, J.: Hypertext and Hypermedia. Academic Press Prof., Inc., San Diago, CA.,
U.S.A. (1990)

10. Garzotto, F., Mainetti, L., Paolini, P.: Hypermedia Design, Analysis, and Evaluation Is-
sues. Communications of the ACM, vol. 38, no. 8. (1995) 74-86

11. Fraternali, P.: Tools and Approaches for Developing Data-Intensive Web Applications: A
Survey. ACM Computing Surveys, vol. 31, no. 3. (1999) 227-263

12. Introduction to the Web Application Development Environment,
http://www.wdvl.com/Authoring/Tutorials. (2004)

13. Christodoulou, S. P., Styliaras, G. D., Papatheodorou, T. S.: Evaluation of Hypermedia
Application Development and Management Systems. ACM Hypertext’98 Conference,
Pittsburgh, USA. (1998) 1-10

14. Garzotto, F., Paolini, P., Schwabe, D.: HDM - A Model-Based Approach to Hypertext Ap-
plication Design. ACM Transactions on Information Systems, vol.11, no. 1. (1993) 1-26

15. Garzotto, F., Mainetti, L.: HDM2: Extending the E-R Approach to Hypermedia
Application Design. Proceedings of the 12th International Conference on Entity
Relationship Approach, Dallas, Texas, USA. (1993) 178-189

16. Schwabe, D., Rossi, G., Barbosa, S. D. J.: Systematic Hypermedia Application Design
with OOHDM. Proceedings of the ACM International Conference on Hypertext, New
York, USA. (1996) 116-128

17. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object Oriented Model-
ing and Design. Prentice Hall Inc. (1991)

18. Chen, P. P.: The Entity-Relationship Model-toward a Unified View of Data. ACM Trans-
actions on Database Systems, vol. 1, no. 1. (1976) 9-36

19. Isakowitz, T., Stohr, E. A., Balasubramanian, P.: RMM: A Methodology for Structured
Hypermedia Design. Communications of ACM, vol. 38, no. 8. (1995) 34-44

20. T. Isakowitz, A. Kamis, M. Koufaris, The Extended RMM Methodology for Web Publish-
ing, Working Paper IS-98-18, Center for Research on Information Systems, 1998.

21. Balasubramanian, V., Bang, M. M., Yoo, Joonhee.: A Systematic approach to designing a
WWW application. Communications of ACM, vol.38, no.8. (1995) 47-48

22. Diaz, A., Isakowitz, T.: RMCase: Computer-Aided Support for Hypermedia Design and
Development. International Workshop on Hypermedia Design (1995) 1-15

23. Lee, Seung C.: IDM: A Methodology for Intranet Design. Proceedings of the International
Conference on Information Systems. Helsinki, Finland (1998) 51-67

24. Fraternali, P., Paolini, P.: Model-Driven Development of Web Applications: The Autoweb
System. ACM Transactions on Information Systems, vol. 28, no. 4. (2000) 323-382

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 156 – 170, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On the Design and Implementation of
Parallel Programs Through Coordination

Chia-Chu Chiang1, Roger Lee2, and Hae-Sool Yang3

1 Department of Computer Science, University of Arkansas at Little Rock,
2801 South University Avenue, Little Rock, Arkansas 72204-1099, USA

cxchiang@ualr.edu
2 Software Engineering and Information Technology Institute, Central Michigan University,

Mount Pleasant, Michigan 48859, USA
lee@cps.cmich.edu

3 Graduate School of Venture, HoSeo Univ., A_San, Chang-Nam, 336-795, Korea
hsang@office.hoseo.ac.kr

Abstract. The current state of art in existing middleware technologies does not
support the development of distributed applications that need processes to
complete a task collaboratively. What is needed in the next generation of mid-
dleware is synergy of heterogeneity, distribution, communication, and coordi-
nation. We are proposing to augment the existing middleware technologies to
provide collaboration support through Multiparty Interaction (MI) protocol
rather than design a new programming language for distributed coordinated
programming. In this paper, a 4-layered interaction model will be presented to
decouple the applications and their underlying middleware implementations in-
cluding coordination protocols by providing a set of generic interfaces to the
applications. The decoupling of applications and middleware technologies by
isolating computation, communication, and coordination promotes reuse, im-
proves comprehension, and eases maintenance due to software evolution.

1 Introduction

Existing middleware has been used to aid the development of distributed applications
in heterogeneous computing environments. However, the current state of art in exist-
ing middleware technologies mainly supports client-server programming model. The
language construct supported is, by large, remote procedure call (RPC). This simple
RPC-based client-server programming model is not adequate to develop distributed
applications that need three or more processes to work together collaboratively.

To support the development of heterogeneous distributed applications for coordi-
nation, we are proposing to augment the existing middleware technologies to provide
collaboration support through Multiparty Interaction (MI) protocol rather than design
a new programming language for distributed coordinated programming. A 4-layered
interaction model will be presented to decouple the applications and their underlying
middleware implementations including coordination protocols by providing a set of
generic interfaces to the applications. The decoupling of applications and middleware
technologies by isolating computation, communication, and coordination promotes
reuse, improves comprehension, and eases maintenance due to software evolution.

 On the Design and Implementation of Parallel Programs Through Coordination 157

2 First-Order Multiparty Interactions in IP

Joung and Smolka [1] write that “A multiparty interaction is a set of I/O actions exe-
cuted jointly by a number of processes, each of which must be ready to execute its
own action for any of the actions in the set to occur.” N. Francez and I. R. Forman [2]
present IP (Interacting Process) as the basis of programming languages for multiparty
interaction.

2.1 Synchronization

In this section, we use the dining philosophers problem to illustrate how multiparty
synchronization works. It consists of four philosophers sitting at a table who do noth-
ing but think and eat. There is a single fork between each philosopher, and each phi-
losopher needs to pick both forks up in order to eat. A solution using IP is presented
in Figure 1.

DINING_PHILOSOPHERS :: [Philosopher0 || Philosopher1 ||
Philosopher2 || Philosopher3 || Fork0 || Fork1 || Fork2 ||
Fork3], where

Philosopheri :: i = 0,…,3
si := ‘thinking’;
*[si = ‘thinking’ → si := ‘hungry’

 si = ‘hungry’ & get_forki[si := ‘eating’] →
 release_forki[]
]

Forki :: i = 0,…,3
*[get_forki[] → release_forki[]

 get_fork(i+1) mod 4[] → release_fork(i+1) mod 4[]
]

Fig. 1. A solution to the dining philosophers problem in IP

P0 F0 P1 F1 P2 F2 P3 F3

I0 I1 I2 I3

Fig. 2. Bipartite graph of the dining philosophers problem

158 C.-C. Chiang, R. Lee, and H.-S. Yang

In Figure 1, the participants of interaction, get_forki, are the fork processes Forki,
Fork(i-1) mod 4, and Philosopheri (we assume that index arithmetic is cyclic, i.e., 0 – 1 =
3 and 3 + 1 = 0). When all the dining philosophers are hungry and all the forks are
available on the table, the coordination among all the processes is illustrated by the
bipartite graph in Figure 2. The thick bars Ii in the graph represents the multiparty
interactions get_forki and the circles the coordinating processes. The edge represents
the possible participations and a process can participate in only one interaction.

2.2 Communication

In this section, we use the leader election problem to illustrate communication in IP.
The leader selection problem is quite simple. There are n ≥ 1 processes Pi (0 ≤ i < n)
and each of them is supposed to have a different natural weight Wi. The leader is the
process Pi satisfying that Wi = max(Wj) where 0 ≤ j < n. A solution to the leader elec-
tion problem is shown in Figure 3.

LEADER :: [P0 || P1 || … || Pn-1], where

Pi :: i = 0, …, n-1
Elect[leaderi := (Wi = max 0≤j<n(Wj))]

Fig. 3. A solution to the leader election problem in IP

The multiparty interaction Elect synchronizes all of the processes, allowing them to
exchange information and determine which participating process becomes the leader.
The participating process that finds itself having the maximum weight will be the
leader.

3 Related Work

A good start for a comprehensive study of multiparty interaction is the paper written
by Joung and Smolka [1]. The paper introduces a taxonomy of languages for multi-
party interaction that covers the complexity of the multiparty interaction implementa-
tion problem. There are several other specification languages for multiparty interac-
tion, TROLL [3], LCM [4], and CAL [5], which are not discussed in [1]. Several
algorithms for implementing IP have been described in [6, 7].

Recent research on coordination can be found in the notions of synchronizers [8, 9],
regulated coordination [10], programmable coordination media [11], intercepting mes-
sages [12], strong interaction fairness via randomization [13], and dependable multi-
party interactions [14]. Radestock and Eisenbach [12] developed a coordination model
based on intercepting messages in a very similar way to the work described in [11].

4 A 4-Layered Model for Distributed Coordination

Radestock and Eisenbach [12] present the concerns in developing coordinated distrib-
uted applications that interact with each other. The concerns are separated into four
parts: the communication part, the computation part, the configuration part, and the

 On the Design and Implementation of Parallel Programs Through Coordination 159

coordination part. The communication part defines how components communicate
with each other. The computation part defines the behavior of a component which
also determines what is being communicated. The configuration part indicates which
components exist, which components can communicate with each other, the method
of communication, and where data come from and where the data are sent to. The
coordination part determines when certain interactions will occur. The dependencies
of these four concerns yield a 4-layered protocol structure in Figure 4.

P

Adapter

Middleware

Platform

Q

Adapter

Middleware

Platform

Applications

Fig. 4. Structure of communicating components through adapters

4.1 Development of Distributed Coordination for Coordination

IP [2] is the programming language adopted to develop heterogeneous distributed
coordinated applications. For example, Figures 1 and 3 contain two examples of IP
programs. IP programs are allowed to be realized under any general programming
environment. The approach we use is to analyze an IP program and generate a multi-
party interaction description that is a data structure to describe the properties of the
multiparty interactions in IP. Our IP language mapping approach allows a multiparty
interaction description written in any target programming language to be automati-
cally generated from an IP program. Application developers then write a program in
the target language to include the multiparty interaction description in the program. A
function in the Adapter layer will be invoked to represent the caller (participating
party) to interact with other participants for coordination. A set of APIs will be devel-
oped to facilitate the process to obtain the multiparty interaction information in the
multiparty interaction description. The multiparty interaction description contains the
information needed by the participating processes to resolve the concerns of commu-
nication, computation, configuration, coordination, and parallelism at run time.

The overall IP approach to developing applications is shown in Figure 5. Applica-
tion developers write an IP program. An interface description in the target language
and a global copy file are generated from the IP program by an IP compiler. An appli-
cation program including the interface description and the global copy file is com-
piled and linked with the adapter library to produce a fully functioning independent
executable file. Therefore, the only thing a programmer needs to do is to write an IP
program for the problem and an application program to include the multiparty inter-
face description in the application program.

160 C.-C. Chiang, R. Lee, and H.-S. Yang

IP Program
IP

Compiler

Interface
Description

Global
Copy File

Application
File

Language
Compiler

Application
Object File

Linker

Adapter
Library

Application
Executable

File

Fig. 5. Steps for developing applications in IP

To demonstrate the suitability of IP for parallel programming, we present three IP
parallel programs in the following sections. They are parallel sum and parallel sorting.
We present these three examples to demonstrate that programmers can specify dis-
tributed coordinated applications in IP for parallel processing through coordination
without explicitly expressing parallelism.

Parallel Sum. A parallel sum algorithm originally presented in [15] adds n = 2m val-
ues on the SIMD-CC (Single Instruction stream, Multiple Data stream – Cube Con-
nected) model. Processor Pj processes local variable aj for all j such that 0 ≤ j ≤ n-1.
When the algorithm begins execution, the aj’s contains the values to be added. At its
termination, a0 contains the sum. In Figure 6, we present an IP program to solve the
problem for MIMD (Multiple Instruction stream, Multiple Data stream) computers.

PARALLEL_SUM :: [P0 || P1 || … || Pn-1], where

Pj (int n, int b[]) :: j = 0, …, n-1
 int aj = b[j];
 for (int i = log(n)-1; i <= 0; i--)
 {
 int d = pow(2, i); // d := 2i;
 [(j < d) & compj[aj = aj + b[j+d]] → []];
 };

Fig. 6. An IP program for the parallel sum problem

The for loop iterates log n times. Suppose we have 16 processes (n = 16) as shown
in Figure 7. In the first iteration, processes 0 to 7 will first obtain the values from
processes 8 to 15, respectively. Processes 0 to 7 then add the values to their own val-
ues and store the results to their own local variables aj. All the operations will be
executed in parallel. The interaction point, compj, determines which processes are
allowed to get involved in the first iteration. In the second iteration, processes 0 to 3
obtain the values from processes 4 to 7, respectively. The processes then add the val-
ues to their own values and store the result to their own local variables aj. In the third
iteration, processes 0 and 1 obtain the values from processes 2 and 3, perform the sum
operation, and store the results to their own local variables, a0 and a1, respectively. In
the fourth iteration, process 0 obtains the value from process 1, performs the add
operation, and stores the total sum to a0. As process 0 terminates, a0 contains the sum.

 On the Design and Implementation of Parallel Programs Through Coordination 161

1

3

4

6

0 5

2
7

9

11

12

14

8 13

10
15

Fig. 7. Process numbers

The multiparty interface description corresponding to the parallel sum IP program
defines the computation, configuration, coordination, and communication of the par-
ticipating processes. For example, the following partial description describes the com-
putation of Pi in the parallel sum problem.

struct parallel_sum_desc {
 …
 struct symbol_00019 {
 …
 struct symbol_00020 {
 kind symbol_kind;
 kind statement_kind;
 int predecessor;
 int successor;
 int index;
 struct stmt_attr {
 int used_symbol;
 int modified_symbol;
 …
 };
 struct symbol_00021 {
…
};

Node 00020 describes a statement of a process. Symbol_kind indicates the types
the symbol nodes such as statement, declaration, process name, etc. Statement_kind
indicates the types of statements including while, if , for, and sequence if the sym-
bol_kind is a statement type. Predecessor and successor nodes indicate the preceding
and succeeding statements of the current statement. Index points to the context of the
current statement in the statement table. The structure stmt_attr describes the proper-
ties of the statement including the variable names, which variables are used in this
statement, and which variables are modified in this statement.

Once the multiparty interface description is created, the application program in-
vokes the following adapter API to initiate the execution.

162 C.-C. Chiang, R. Lee, and H.-S. Yang

EXECOPR(INOUT &OperationArgumentBuffer,
 OUT &UserExceptionBlock);

The OperationArgumentBuffer parameter is the beginning address of the multiparty
interaction description. The multiparty interface description is passed down to the
adapter, so the adapter can execute the operations for the process at runtime. The
UserExceptionBlock parameter is used to return any user exceptions that are raised
during runtime.

Parallel Sorting. The odd-even transposition sort in [15] was originally designed for
the SIMD-MC (Single Instruction stream, Multiple Data stream - Meshed Connected)
model, in which the processing elements are organized into a one-dimensional array.
Assume that b = [b0, b1, …, bn-1] is the set of n elements to be sorted, n is even, and
for all i, 0 ≤ i ≤ n-1, process Pi contains array elements bi.

The algorithm requires n/2 iterations. Each iteration has two phases. In the first
phase, called odd-even exchange, the value of ai in every odd-numbered processor i
(except process n-1) is compared with the value of ai+1 stored in even-numbered proc-
essor (i+1). The values are exchanged, if necessary, so that the lower-numbered proc-
essor contains the smaller value. In the second phase, called even-odd exchange, the
value of ai in every even-numbered processor i is compared with the value of ai+1 in
processor (i+1). As the first phase, the values are exchanged, if necessary, so that the
lower-numbered processor contains the smaller value. After n/2 iterations the values
are sorted.

The algorithm can be easily implemented in IP with n parallel processes, each of
which holds a data element. The data comparisons and exchanges are done through
the multiparty interactions between neighboring processes. An IP program for the
parallel sorting is as follows, assuming the type of data to be sorted is char:

OESort :: [P0 || P1 || … || Pn-1], where

 Pj(int n, char b[]) :: j = 0, …, n-1
 char aj = b[j];
 for (int i = 1; i <= [n/2]; i++)
 {
 //odd compare and exchange
 [(j < n-1 ∧ odd(j)) & compj[aj = min(aj, aj+1)] → []

 (j > 0 ∧ even(j)) & compj-1[aj = max(aj-1, aj)] → []
];
 //even compare and exchange
 [(j < n-1 ∧ even(j)) & compj[aj = min(aj, aj+1)] → []

 (j > 0 ∧ odd(j)) & compj-1[aj = max(aj-1, aj)] → []
];
 };

Fig. 8. An IP program for the odd-even transposition sort problem

 On the Design and Implementation of Parallel Programs Through Coordination 163

Each process Pj holds a data element, aj. The odd-numbered process Pj compares
and exchanges the data element through the multiparty interaction compj (j is odd, i.e.
odd(j) is true) with the process Pj+1. All these comparisons and exchanges are done in
parallel, because they use different multiparty interactions compj (j is odd). The even
numbered processes are doing the same tasks. Figure 9 illustrates the execution of the
IP program for a char array: b[] = {‘S’,’R’,’Q’,’P’}. The boxes in the figure represent
the three multiparty interactions, comp0, comp1, and comp2. The dotted vertical lines
show the progress of the processes (from top to bottom).

S R Q P

P0 P1 P2 P3

Q R

comp1

comp0

Q S

comp2

P R

comp1

SP

comp0 comp2

P Q R S

Fig. 9. Odd-even transposition sort of four values

It can be shown that after passing through k pairs of odd and even multiparty inter-
actions, the data hold by each process is no farther than n – 2k positions away from its
final sorted position. After process Pj finishes [n/2] iterations, the data that it holds in
aj must have passed through [n/2] pairs of odd and even multiparty interactions.
Therefore, the array is sorted when all processes are terminated. Note that there is no
global barrier synchronization across all processes in this program. The multiparty
interactions and their synchronization are restricted between adjacent processes.

4.2 Coordination Support in the Adapter Layer

The implementation of our distributed multiparty interactions consists of three phases:
synchronization, data exchange, and computation. In the synchronization phase, en-
abled interactions are detected and one is selected for execution. In the data exchange
phase, data are exchanged among participating processes through the underlying mid-

164 C.-C. Chiang, R. Lee, and H.-S. Yang

dleware. In the computation phase, upon receiving all the needed data, the processes
participating in an interaction continue their executions on the interaction bodies. For
example, in the dining philosophers problem shown in Figure 1, Philosopher0, Fork0,
and Fork3 need to synchronize at the interaction point get_fork0 in the synchronization
phase. Next, they start to exchange data in the data exchange phase. In this problem,
however, there is no need for data exchange among Philosopher0, Fork0, and Fork3.
Following the data exchange phase, these three participants enter the computation
phase, Philosopher0 needs to execute the body of get_fork0 by assigning ‘eating’ to s0
which is a local variable declared in the Philosopher0 process.

After synchronization, data exchange takes place. Thread managers inform their
participating processes which interactions have been selected for execution. The par-
ticipating processes exchange the data they are responsible for with their correspond-
ing thread managers by means of PutData(INOUT &OperationArgumentBuffer) and
GetData(INOUT, &OperationArgumentBuffer). The implementation of GetData()
and PutData() is placed in the Adapter layer of the protocol structure shown in Figure
4. GetData() and PutData() transmit data through the invocation of middleware func-
tions implemented in the Middleware layer. At this moment, no participating proc-
esses can continue until they all have completed data exchanges.

The format of the OperationArgumentBuffer is defined in the interface description in
the target language. The interface description is compiled from an IP which describes
the interfaces of a coordination module. This interface description was designed to al-
low an adapter to examine the signature of the requested services at runtime such as
operation names, parameters orders, parameters types, and parameters sizes.

5 Implementation of the Coordination Support

The heart of the design and implementation of multiparty interactions is the distrib-
uted guard scheduling problem described as follows:

Given n multiparty interactions Ii (i=1,…, n), each of which has li parties to be par-
ticipated by distinct processes form m participating processes Pj (j=1,…,m) whose
identifiers are not know until run-time, the guard scheduling problem is to select
at subset of the multiparty interactions for execution, subject to the following
constraints,

1. Each interaction selected for execution must have all its parties participated by
distinct processes.

2. No process can participate in executions of more than on interaction.
3. If there are interactions which can be selected for execution, the selection must

be finished in finite time.

Constraints 1 and 2 above are the safety requirement and Constraint 3 the liveness
requirement of the problem.

For each interaction Ii, we create an interaction process, denoted as Ii. If Pj is ready
to participate in k interactions Ii1, ..., Iik, we create (1) thread manager Mj and (2) one
proxy thread Tj,ir for each of Ii1, ..., Iik. The proxy thread Tj,ir is used to communicate
with interaction process, Iir . Thread manager Mj serves as the manager of all the
proxy threads Tj,i1, … Tj,ik which it spawns.

 On the Design and Implementation of Parallel Programs Through Coordination 165

The basic idea of the protocol for Tj,ir is as follows: It sends message Request to Iir

to notify its intension to participate. When Iir receives all the Requests needed, it
sends back a message All-Met to Tj,ir , telling Tj,ir that Iir is ready to be activated. After
receiving message All-Met, Tj,ir may do one of the following three tasks: (1) if none of
the other Tj,ir’ has committed, Tj,ir may proceed to commit itself to Iir by sending a
Commit message to it and makes transition to “commit-sent” state (2) if a Tj,ir’ with
higher priority has committed to Iir’ , Tj,ir withdraw its participation by sending a With-
draw message to Iir and makes transition to “re-try” state, or (3) if a Tj,ir’ with lower
priority has committed to Iir’, Tj,ir makes transition to “pending” state waiting to com-
mit in case the commitment of Tj,ir’ does not realize the actual activation of Iir’ (due to
withdrawals of other participants of Iir’). The information about the commitment or
pending of all proxy threads is stored in a shared array accessed through critical sec-
tions. Once in “commit-sent” state, Tj,ir is waiting for Succeed message from Iir when
it receives commitment from all of its participants. After Tj,ir receives Succeed mes-
sage, it sends a Finish message to thread manager Mj to register the activation of Iir

and make transition to “success” state.
The protocol for interaction process, Iir, is a simple two-phase locking protocol

with three states: “meeting”, “all-met” and “success”. In the “meeting” state, Iir re-
ceives Request message or Abort message from its participants, incrementing or dec-
rementing its request counter, respectively. When the request counter reaches the total
number of participants, Iir sends All-met message to all of the participants, and makes
transition to “all-met” state. In the “all-met” state, it waits for either a Commit, With-
drawal or Abort message from each of its participants. A commit counter and a with-
drawal counter are used to track the numbers of the corresponding participants to
decide whether it can transit to “success” state (when all participants committed) or
“meeting” state to start over again for the next round of coordination (when all re-
sponded, but the number of committed falls short of the total number of participants).

The protocol for thread manager Mj is to coordinate its all the proxy threads. It also
intercepts and relay messages between proxy threads and its corresponding interaction
process. In particular, it will discard all the messages to Tj,ir after it is killed by Mj.
The main function of Mj

 is to synchronize the transitions of Tj,i1, … Tj,ik. After it
spawns the proxy threads Tj,i1, …, Tj,ik, it waits for either Retry message or Finish
message from each of them. Upon receiving a Finish message from Tj,ir, it sends Stop
message to all the other proxy threads so that they can send Withdrawal or Abort
message to its corresponding interaction manages before make transition to ‘ready-to-
die” state. If all proxy threads send Retry message, Mj

 sends TryAgain message back
and allow them to start the next round of coordination. The details of the above three
protocols can be found in [16].

6 Correctness

In this section, we prove the correctness of the guard scheduling algorithm presented
in the previous sections. A solution to the guard scheduling problem for coordinating
first-order multiparty interactions must satisfy the requirements of safety, liveness,
and progress.

166 C.-C. Chiang, R. Lee, and H.-S. Yang

6.1 Safety

The safety requirement of the guard scheduling problem defined in Section 5 de-
mands that

• no interaction be selected to execute unless all its parties are participated by distinct
processes (interaction safety), and

• no process participates in more than one interaction at a time (process safety).

The interaction safety requirement can be derived from the protocol of Ir directly.
In particular, process Ir will not enter into state ‘all-met’ unless it receives the requests
for participation from q (i.e. lr) processes. Furthermore, it will not enter into state
‘success’ unless it receives the commitments from all these processes. The process
safety is ensured by Theorem 1 as follows.

Theorem 1. Among the proxy threads Tj,i1, …, Tj,ik, started by Pj, only one can enter
into state ‘success’.

Proof: Thread Tj,ir can enter into state ‘success’ only from state ‘commit-sent’. It can
enter into state ‘commit-sent’ either from state ‘pending’ or state ‘request-sent’.
Thread Tj,ir moves from state ‘request-sent’ to state ‘commit-sent’ only when all the
bits of bit map a[] are 0. If it moves into state ‘pending’, it will not enter into state
‘commit-sent’ until another thread sends it a Continue after leaving state ‘commit-
sent’. Therefore, there is only one thread in state ‘commit-sent’ at any time. After the
thread enters into state ‘success’, all other threads will be killed.

6.2 Liveness

The liveness requirement of the guard scheduling problem demands that there be no
deadlock in the system comprising all the threads and processes running the protocols
of Tj,ir, Mj, and Ii. In particular, no process or thread is allowed to stay in a waiting
state indefinitely. After Ii receives all the Ii requests it needs and enters into state ‘all-
met’, it will receive the same number (li) of Commit(), Withdraw() or Abort(), pro-
vided that each thread Tj,ir involved is live and responds eventually. After that, Ii will
enter either into state ‘meeting’ again for the next round of coordination or into state
‘success’. In other words, Ii is live as long as each thread Tj,ir with which it communi-
cates is live. Similarly, if every thread Tj,ir (1 ≤ r ≤ k) is live, thread Mj is also live. In
particular, thread Mj will remain in state ‘working’ and start the next round of coordi-
nation if all the k proxy threads Tj,ir (r = 1, …, k) are successful. If one thread suc-
ceeds, Mj will receive Finish() from it and enter into state ‘finishing’. Mj will further
receive (k-1) ReadyToDie()s from the remaining threads and enters into state ‘suc-
cess’. Therefore, the liveness of the entire system hinges on the liveness of the proto-
col of Tj,ir. The following lemma is used to prove the liveness of Tj,ir.

Lemma 1. If a thread Tj,ir is in state ‘pending’ indefinitely, there must be another
thread Tj,ir’ of Pj such that r < r’ in state ‘commit-sent’ indefinitely.

Proof: a[r] = 1 only if Tj,ir is in state ‘commit-sent’ or ‘pending’, but the first thread
Tj,ir with a[r] = 1 must be in state ‘commit-sent’. To simplify the notation, we rename

 On the Design and Implementation of Parallel Programs Through Coordination 167

Tj,ir to be T’j,r. Let us assume that T’j,r stays in state ‘pending’ indefinitely. When
thread Tj,ir enters into state ‘pending’, a[(r+1)…k] ≠ 0 must be held. Let a[u1], …,
a[uv] (r+1 ≤ u1 < … < uv ≤ k) be all the bits that either are 1 when T’j,r enters into state
‘pending’ or ever become 1 when T’j,r is in state ‘pending’ (indefinitely). Thread T’j,uv
must be in state ‘commit-sent’ when T’j,r enters into state ‘pending’. Other threads
T’j,u1, …, T’j,uv-1 must be in state ‘pending’ first. We want to prove that based on the
assumption above at least one of T’j,u1, …, T’j,uv must be in state ‘commit-sent’ in-
definitely. Consider thread T’j,uv first. If it does not stay in state ‘commit-sent’ indefi-
nitely, it must receive a Success() or a Fail in finite time. If it receives a Success(),
T’j,r would leave state ‘pending’ in finite time. This would contradict the assumption
above. If it receives a Fail, thread T’j,uv-1 will enter into state ‘commit-sent’ in finite
time. The same procedure will also apply to threads T’j,uv-1, …, T’j,u1. Therefore, if
none of T’j,u1, …, T’j,uv can stay in state ‘commit-sent’ indefinitely, T’j,r will leave
state ‘pending’ in finite time. This proves the lemma. There are four waiting states in
the protocol of Tj,ir: ‘req-sent’, ‘commit-sent’, ‘pending’, and ‘re-try’. The waiting of
Tj,ir in state ‘req-sent’ is to ensure interaction safety and should not be considered as a
problem for liveness. Tj,ir in state ‘re-try’ will enter into state ‘init’ after all the threads
started by Pj send Withdraw()s to their interactions. Therefore, for the liveness of the
protocol of Tj,ir, we only need to prove that no thread Tj,ir will stay in state ‘commit-
sent’ or ‘pending’ indefinitely. This is done in the following theorem.

Theorem 2. It is impossible for any thread Tj,i in the system to stay in state ‘commit-
sent’ or ‘pending’ indefinitely.

Proof: According to Lemma 1, we only need to prove that it is impossible for any
thread Tj,i to stay in state ‘commit-sent’ indefinitely. Let us assume that there is a
thread Tj1,i1 staying in state ‘commit-sent’ indefinitely. This means that Tj1,i1 receives
neither Success() nor Fail in finite time. Therefore, none of the threads coordinating
interaction Ii1 ever sends a Withdraw() or an Abort() to it. Furthermore, there is at
least one of these threads that does not ever send a Commit() either. Let this thread be
Tj2,i1. According to the protocol, Tj2,i2 from the same process Pj2 such that it stays in
state ‘commit-sent’ indefinitely and i1 < i2. Continuing this way, we will have an
infinite series Tj1,i1, Tj2,i1, Tj2,i2, …, Tjk,ik-1, Tjk,ik, … such that Tjk,ik (1 ≤ k) and Tjk,ik-1 (2
≤ k) are indefinitely in states ‘commit-sent’ and ‘pending’, respectively, and i1 < i2 <
… < ik < …. On the other hand, there are only a finite number (m) of interactions and
we must have i1 < i2 < … < ik < … < m. Therefore, the series above cannot be infinite.
We have reached a contradiction.

6.3 Progress

We have proved the liveness of the system. The next question is whether the system
can make progress in selecting interactions. The liveness of the system guarantees that
an interaction process in state ‘all-met’ will enter into state ‘meeting’ or state ‘suc-
cess’ in finite time. The progress requirement demands that at least one of those inter-
actions in state ‘all-met’ enter into state ‘success’. This requirement is satisfied in our
algorithm. In order to prove this, we need the lemma as follows.

168 C.-C. Chiang, R. Lee, and H.-S. Yang

Lemma 2. If thread Tj,ir sends Withdraw() to Iir in state ‘req-sent’ and enters into state
‘re-try’, there must be another thread Tj,ir’ of Pj in state ‘commit-sent’ such that r’ < r.

Proof: Thread Tj,ir in state ‘req-sent’ sends a Withdraw() to Iir only if it finds a[1..(r-
1)] ≠ 0. Let r’ be the largest integer such that r’ < r and a[r’] = 1. According to the
protocol, thread Tj,ir’ is either the first thread in state ‘commit-sent’ or a past pending
thread which has been woken up by another thread and entered into state ‘commit-
sent’.

The following theorem shows that in each coordination at least one selectable in-
teraction will be selected. This ensures the progress of our algorithm.

Theorem 3. Let Iu1, …, Iuw be the subset of all the interactions that enter into state
‘all-met’ after receiving all the requests they need. Then, at least one of them will
enter into state ‘success’.

Proof: Let Pv1, …, Pvy be all the processes involved to make Iu1, …, Iuw enter into
state ‘all-met’. Without loss of generality, we also assume Iu1 < … < Iuw, i.e. u1 < … <
uw. Due to the liveness of the system, every interaction of Iu1, …, Iuw will receive a
response, Commit(), Withdraw(), or Abort(), from each of its participating processes
from Pv1, …, Pvy and enter into either state ‘meeting’ or state ‘success’. Let us assume
that none of Iu1, …, Iuw enters into state ‘success’. According to the protocol, a thread
Tvj,ui (1 ≤ j ≤ y, 1 ≤ i ≤ w) can send Withdraw() only in two states: ‘req-sent’ and
‘pending’. But, based on the assumption above, it is impossible for Tvj,ui to send With-
draw() in state ‘pending’. This is because otherwise it must receive a Stop from Mvj
and therefore there must be a thread Tvj,ui’ (1 ≤ i’ ≤ w) that succeeds in its coordi-
nation. This would imply that Iui’ enters into state ‘success’. To simplify the notation,
Pvj, Iui, and Tvj,ui are renamed P’j, I’i, and T’j,i, respectively. Consider I’w first. Because
it enters into state ‘meeting’, it must have received at least one Withdraw() from, say
T’j1,w (1 ≤ j1 ≤ y). According to Lemma 2, there must be a thread T’j1,i1 that has sent a
Commit() to I’i1 such that i1 < w. Since I’i1 also enters into state ‘meeting’, it must
have received a Withdraw() from say, T’j2,i1 (1 ≤ j2 ≤ y). By using Lemma 2 again, we
can find another thread T’j2,i2 that has sent a Commit() to I’i2 such that i2 < i1. Continu-
ing this way, we will have an infinite series T’j1,w, T’j1,i1, T’j2,i1, …, T’jk,ik, T’jk+1,ik, …
such that … < ik < … < i1 < w. On the other hand, there are only a finite number (w)
of interactions involved and we must have 1 < … < ik < … < i1 < w. Therefore, the
above series cannot be infinite. We have reached a contradiction.

7 Summary

First-order multiparty interaction is one of the abstractions in the distributed pro-
gramming model, called Interacting Processes, proposed by N. Francez and I. R.
Forman [2]. In this paper, we proposed an algorithm for coordinating first-order mul-
tiparty interactions on demand with the middleware support. By taking advantage of
multi-threading supported by modern operating systems, this algorithm requires less
messages than the algorithm proposed by Joung and Smolka [13]. In this algorithm,
middleware serves as the underlying communication infrastructure. Data exchanges

 On the Design and Implementation of Parallel Programs Through Coordination 169

are done by middleware. Application developers can develop distributed applications
without concerning about the issues of heterogeneity such as data marshal-
ling/unmarshalling and data formats. Applications in different programming
languages running on different machines can exchange information across different
network systems. In addition, no specific language processor needs to be implemented
in order to execute IP programs. Our model allows IP programs to be executed in any
general programming environment. Finally, the concerns of heterogeneity, distribu-
tion, communication, and coordination are separated into a 4-layered interaction
model. The model isolating computation, communication, and coordination promotes
reuse, improves comprehension, and eases maintenance due to software evolution.

References

1. Joung, Y.-J., Smolka, S.: A Comprehensive Study of the Complexity of Multiparty Inter-
action. Journal of the ACM. Vol. 43. No. 1. (1996) 75-115

2. Francez, N., Forman, I. R.: Interacting Processes. Addison-Wesley (1996)
3. Jungclaus, R., Saake, G., Hartmann, T., Sernadas, C.: TROLL: A Language for Object-

Oriented Specification of Information Systems. ACM Transactions on Information Sys-
tems. Vol. 14. No. 2. (1996) 157-211

4. Feenstra, R., Wieringa, R.: LCM 3.0: A Language for Describing Conceptual Models.
Technical Report IR-344. Faculty of Mathematics and Computer Science. Vrije Univer-
siteit, Amsterdam (1993)

5. Ruiz, A., Corchuelo, R., Pérez, J., Durán, A., Toro, M.: An Aspect-Oriented Approach
based on Multiparty Interactions to Specifying the Behavior of a System. Proceedings of
the International Conference on Principles, Logics, and Implementations of High-Level
Programming Languages (PLI’99). (1999) 56-65

6. Garg, V., Ajmani, S.: An Efficient Algorithm for Multiprocess Shared Events. Proceedings
of the 2nd Symposium on Parallel and Distributed Computing. (1990)

7. Joung Y.-J., Smolka, S.: A Completely Distributed and Message-Efficient Implementation
of Synchronous Multiprocess Communication. In Yew, P.-C. (ed.): Proceedings of the 19th
International Conference on Parallel Processing. Vol. 3. (1990) 311-318

8. Frolund, S., Agha, G.: A Language Framework for Multi-object Coordination. Proceedings
of ECOOP’93. Vol. 707. Lecture Notes in Computer Science, Springer-Verlag, (1993)

9. Frolund, S.: Coordinating Distributed Objects: An Actor-Based Approach to Synchroniza-
tion. MIT Press, (1996)

10. Minsky, N., Ungureanu, V.: Regulated Coordination in Open Distributed Systems. In: Gar-
lan, D., LeMetayer, D. (eds.): Proceedings of 2nd International Conference on Coordination
Languages and Models. Spring-Verlag, (1997)

11. Denti, E., Natali, A., Omicini, A.: Programmable Coordination Media. In: Garlan, D., Le-
Metayer, D. (eds.): Proceedings of 2nd International Conference on Coordination Lan-
guages and Models. Spring-Verlag, (1997)

12. Radestock, M., Eisenbach, S.: Component Coordination in Middleware Systems. Proceed-
ings of IFIP International Conference on Distributed Systems Platforms and Open Distrib-
uted Processing. Springer-Verlag, (1998) 225-240

13. Joung, Y.-J., Smolka, S.: Strong Interaction Fairness via Randomization. IEEE Transac-
tions on Parallel and Distributed Systems. Vol. 9. No. 2. (1998) 137-149

170 C.-C. Chiang, R. Lee, and H.-S. Yang

14. Zorzo, A., Stroud, R.: A Distributed Object-Oriented Framework for Dependable Multi-
party Interactions. Technical Report No. 671. University of Newcastle upon Tyne. United
Kingdom (1999)

15. Quinn, M. J.: Designing Efficient Algorithms for Parallel Computers. McGraw-Hill,
(1987)

16. Chiang, C.-C., Tang, P.: Middleware Support for Coordination in Distributed Applications.
Proceedings of the Fifth IEEE International Symposium on Multimedia Software Engi-
neering. (2003)

Reusability Analysis of Four Standard

Object-Oriented Class Libraries

Saeed Araban1 and A.S.M. Sajeev2

1 Department of Computer Science and Software Engineering,
The University of Melbourne, Carlton, VIC 3010, Australia

araban@unimelb.edu.au
2 School of Mathematics, Statistics and Computer Science,

University of New England, Australia
sajeev@turing.une.edu.au

Abstract. Class libraries play a key role in object-oriented paradigm.
They provide, by and large, the most commonly reused components in
object-oriented environments. In this paper, we use a number of met-
rics to study reusability of four standard class libraries of two object-
oriented languages; namely Java and Eiffel. The purpose of the study is
to demonstrate how different design philosophies of the two languages
have affected structural design and organization of their standard li-
braries that in turn might have affected their reusability with regards to
Ease of Reuse and Design with Reuse. Our study concludes that within
limits of our measurements, the Java libraries are easy to reuse whereas
Eiffel libraries are better designed with reuse. We observe that whilst
design with reuse may make class libraries extensible and maintainable,
but it does not necessarily make them easy to reuse.

1 Introduction

Reuse is one of the major advantages of Object-Oriented (OO) paradigm [16, 12].
Object-based middleware technologies, such as SUN’s J2EE, Microsoft’s .net
and OMG’s CORBA, are also improve reusability of commercial-off-the-shelf
(COTS) components by providing greater interoperability across different hard-
ware/software platforms. We believe that such technologies will lead to a much
more competitive, democratized, quality driven component market with far less
emphasis on the programming language and/or runtime environment of the com-
ponents. In the context of OO class libraries, that means libraries of high quality
classes that are well designed, well organized, regardless of their programming
language, are more likely to compete and survive. It is thus increasingly impor-
tant that class libraries are designed and organized more carefully, in such a way
that makes them easier to develop, maintain and reuse.

The most basic unit of reuse in Object-Oriented Programming (OOP) is
called Class. A class may be defined as implementation of an abstraction of an
entity in the system. Each class encapsulates relevant data and valid operations
on that data for an entity. In other words, a class is an implementation for an

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 171–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

172 S. Araban and A.S.M. Sajeev

Abstract Data Type (ADT). Once defined, a class can potentially be reused in
different object-oriented systems.

There are different types of software reuse including Black- and white-box
reuse [6]. Black-box reuse (a.k.a. verbatim reuse) is when software components
are reused without any modification [18, 2]. White-box reuse is the reuse of
components through modification and adaptation [18]. White-box reuse usually
requires access to the source code of the components and intimate knowledge
about their design and implementation. Compared to black-box, white-box reuse
can be more flexible; however, it can also be more expensive and difficult to
develop and maintain.

OOP supports both black- and white-box reuse. White-box reuse is achieved
through the inheritance relation, where a class may inherit features of its parent
class(es). Black-box reuse is achieved through client-supplier relation, where a
class relies on services provided by other class(es).

Class libraries are the main source of reusable components in OO Languages
(OOL) that provide essential building blocks and frameworks for constructing
software systems from common data structures (e.g. lists and stacks) to those
handling networking and security protocols. Domain specific class libraries are
also available for applications ranging from numerical analysis [19, 17] to parti-
cle physics [3] and even agricultural modelling [13]. Therefore, learning various
class libraries in modern OOLs may well take more time and effort than learn-
ing syntax and semantics of the language itself. The large number of available
classes and the complexity of the relationship among them may in fact hinder
the learning process.

In this paper, we argue that both designers and re-users of class libraries may
benefit from metrics that help them to measure, analyse and compare various
quality attributes, such as reusability and maintainability, of the class libraries.

Our hypothesis here is that an OO class library is easier to reuse if it reduces
the amount of effort needed by a programmer to find and understand the class
that she needs. Here, we try to establish links between the effort required for
learning and understanding a class library to its number of classes, the amount
of similarity between classes, and the complexity of classes in terms of the num-
ber and complexity of their methods and the number and complexity of their
relationships with other classes.

The rest of the paper is organized as follows. In the next section, we develop
our criteria and method of evaluation. In Section 3, we give a brief description of
the organization of Java and Eiffel libraries. In Section 4, we analyse and compare
the structure of the two languages libraries based on the criteria developed in
Section 2. Section 5 draws some conclusions and discusses future work.

2 Criteria and Method of Evaluation

In this paper, we analyse and compare standard class libraries of two prominent
OOLs, Eiffel [16] and Java [11] to assess how easy they are to be reused by

Reusability Analysis of Four Standard Object-Oriented Class Libraries 173

programmers (Ease of Reuse) and to what extent they practice reuse in their
own construction (Design with Reuse).

Eiffel is chosen since it is considered to be one of the purest OOLs [14].
It is widely appreciated among OO researchers for its simple syntax and rich
semantics. Java, on the other hand, is a popular OOL which is widely used in
the commercial world. Both these languages support basic OO concepts, such as
classes and objects, inheritance, strong typing and late binding, and automatic
memory management and garbage collection.

However, Java and Eiffel follow different design philosophies and offer differ-
ent degrees of support for the above concepts (e.g. single vs. multiple-inheritance),
which makes them good representatives for the OOLs family. Also, these different
designphilosophiesmayhaveaffectedorganizational structure of the class libraries,
which in turn may have affected the complexity, flexibility, and consequently
reusability of each class library.

Our method of evaluation is based on measuring various attributes of the
class libraries. There are many software metrics – both general (e.g. [1], [7]) and
OO specific metrics [9] – in the literature. Among those metrics, we have chosen
a subset of Chidamber and Kemerer’s metrics suite for object-oriented design
[4] because of their sound theoretical foundation, clear and widely accepted def-
initions, and their ease of measure. Furthermore, in our view, those metrics can
measure attributes that are relevant to reusability of class libraries.

We use two criteria for analysing the reusability aspects of class libraries.
They are: Ease of Reuse, and Design with Reuse.

2.1 Ease of Reuse

Ease of reuse analyses how classes are designed, structured and distributed into
libraries so that they can be reused easily. It also looks at how easy it is for
a programmer to incorporate a library class into a program once they have
located the right class. A straightforward way to evaluate the latter criterion is
to compare the steps required to use a library class in a program.

However, a more interesting problem in ease of reuse is the difficulty for a
programmer to choose the required class. The design of the class library and the
support provided to search the library are important aspects in evaluating this
criterion. In order to study how the structure of the library affects ease of reuse,
we use the following metrics.

Weighted Methods per Class (WMC). Definition: Consider a class C1,
with methods M1, · · · , Mn that are defined in the class. Let c1, · · · , cn be the
complexity of the methods [4]. Then:

WMC =
∑n

i=1 ci

This metric is an indication of the complexity of a class based on the complexity
of its methods (ci). However, for simplicity purposes, we consider all methods to
be of unity complexity:

WMC = n

174 S. Araban and A.S.M. Sajeev

The original metric takes all methods in a class into account. However, in order
to reuse a class, only its public methods are needed to be learned and understood.
Therefore, we only include public methods in our WMC measurement.

Classes with smaller number of methods are likely to be easier to understand
and learn and therefore be reused. Also, classes with large number of methods
are likely to be more application specific, limiting possibility of wider reuse.
But, with the same token, higher WMC values can indicate more functional-
ity. Thus, one may conclude that higher WMC is good for highly specialised
and domain specific classes/libraries, whereas lower WMC is more suitable for
general purpose classes/libraries.

Depth of Inheritance Tree (DIT). Definition: The length from a class
(node) to the root of the inheritance hierarchy is the depth of inheritance of the
class. In the case of multiple inheritance, the DIT will be the maximum length
from the node to the root of the hierarchy [4].

Inheritance provides white-box reuse. To fully understand a class, a pro-
grammer needs to understand its ancestors. Greater DIT means larger number
of ancestors. Therefore, harder to understand and learn the class. Furthermore,
greater DIT implies greater specialization of the class that again may limit the
possibility of wider reuse.

2.2 Design with Reuse

Class libraries can be considered as development frameworks for their application
domain. In the context of class libraries, Design with Reuse may be defined
as: reusing library classes by the other classes within the library. Hence, the
degree of design with reuse for a library can be considered as an indication of
its effectiveness as a framework for the intended application domain.

As mentioned before, both white- and black-box reuse are supported in OOLs
through inheritance and client-supplier relations. Therefore, measuring these re-
lations among classes of a library can be a good indicator of the level of design
with reuse within the library.

Depth of Inheritance Tree (DIT). As defined in 2.1.2, DIT can also be
used as an indicator for level of white-box reuse within a library. Higher DIT
values may be interpreted as greater white-box reuse amongst classes of a library.

Number of Children (NOC). Definition: NOC =number of immediate sub-
classes subordinated to a class in the class hierarchy [4].

Higher NOC value indicates more reuse in the library itself through inher-
itance. NOC is also a measure for the degree of impact a class has on other
classes and the library. Libraries with high NOC value can be more sensitive
to changes in their classes, which can be an important factor in the library de-
sign and maintenance. Therefore, new and less stable class libraries would try to
minimize this number. On the other hand, more stable libraries may have higher
values for NOC without compromising their maintainability.

Reusability Analysis of Four Standard Object-Oriented Class Libraries 175

Coupling between object Classes (CBO). Definition: CBO for a class is
a count of the number of other classes to which it is coupled. Two classes are
coupled when methods declared in one class use methods or instance variables
defined in another class [4].

Coupling can be measured at two distinct levels, interface and implemen-
tation. Interface coupling refers to those dependencies between classes, which
are visible through their public interfaces (e.g. inheritance and public methods’
signature). On the other hand, Implementation-coupling cannot be seen through
the public interface of coupled classes (e.g. private state variables and methods’
signatures).

Coupling is a measure of design with reuse. Higher the coupling, higher the
number of use of other classes. It is also a measure of maintainability.

One might argue that lower the coupling the higher the independence of a
class, and therefore higher the ease of reuse. Unlike inheritance metrics, we have
not used CBO as an ”ease of reuse” measure because, as far as a programmer
is concerned, coupling is an internal matter of the class and the programmer
does not have to study the behavior of the server classes to understand a client
class. For example, a Car class may be a client for an Engine class, but a driver
only needs to know the behavior of the Car class, and not the Engine class. On
the other hand, if a Car class inherits from a Vehicle class and if the steering
behavior (which is common to all vehicles) is defined in the Vehicle class, a driver
needs to understand both Car and Vehicle classes.

2.3 Compared Libraries

A meaningful comparison can only be made between class libraries within similar
application domains that provide similar set of functionalities.

This study is limited to subsets of Java and Eiffel standard libraries. Com-
pared standard libraries are fallen into two main categories: Basic and GUI (see
Table 1). The Basic category includes the most widely used libraries, such as
mathematical, I/O and text processing libraries. Some of these libraries, such as
Lang in Java and Kernel in Eiffel, provide basic data types, data structures that
are essential for programming in the corresponding language.

The GUI category provides another set of widely used Eiffel and Java libraries
that support design and implementation of graphical environments.

The following is a very brief introduction to each of the target libraries.

Java Libraries. Java standard library is organized over several packages, such
as java.lang, java.io, java.awt. In this study, we used the following subset of
JDKTM standard class library:

– IO: This package contains three groups of classes and interfaces:
1. classes for building data streams.
2. classes and interfaces for serialization.
3. classes and interfaces for dealing with the file system.

– Lang: This package contains classes that are essential to the Java language,
such as class Object, Throwable, Exception and Thread.

176 S. Araban and A.S.M. Sajeev

Table 1. Compared Eiffel and Java Libraries

Java Eiffel

Basic:

Lang
IO
Math
Util
Text

Kernel
Structure
Iteration
Thread
Lex
Parse

GUI:

AWT Vision

– Math: This package contains classes for performing arithmetic and bit ma-
nipulation on decimal and integer numbers.

– Text: This package contains classes and interfaces for handling text, dates,
numbers, and messages.

– Util: This package contains useful utility classes (e.g. data structures, random
number generator, string tokenizer, date and time).

– AWT: This package contains classes for creating graphical environments and
user interfaces.

Eiffel libraries. ISE Eiffel provides a set of class libraries for a wide range of
applications. ISE Eiffel (for MS-Windows) that is used in this study comes with
Eiffel Base and vision libraries, which consist of the following libraries:

– Eiffel Base libraries:
• Kernel: Covers fundamental concepts close to the language, such as basic

structures, general purpose classes, and execution mechanisms such as
garbage collector.

• Data Structure: Provides fundamental data structures and algorithms. It
is the largest and probably the most important library in Base collection.

• Iteration: Provides ways for systematic traversal of some data structures.
It can be considered as a part of the Data Structure library.

• Lex: Provides lexical analysis services.
• Parse: Supports syntactical analysis.

– Eiffel Vision: provides graphical classes, which can be mapped into any sup-
ported windowing system (e.g. X11 and Windows) that can guarantee source
level compatibility.

3 Analysis of the Libraries

3.1 Ease of Reuse

Both Eiffel and Java classes are easy to reuse provided that one knows exactly
what classes are provided and how to find and integrate them. In Java, standard

Reusability Analysis of Four Standard Object-Oriented Class Libraries 177

class libraries are organized into packages, which can be imported into classes of
a Java program using import statements. Similarly, Eiffel libraries are organized
into clusters of related classes. However, in Eiffel, libraries are imported at the
system level using compiler directives. The advantage of the Eiffel approach is
that each class within a system does not need to explicitly specify where the
library classes are coming from, which not only makes them simpler, but also
immune to changes to the libraries.

WeightedMethodsperClass (WMC). Thepercentage of classes correspond-
ing to each WMC values for different libraries are shown in Figures 1 to 4.

According to the above figures, Java libraries have lower WMC values than
their Eiffel counterparts, which is more evident in the Base libraries than the
GUI ones. This means that, on average, there is less number of methods to go
through to understand a class in Java libraries than a corresponding class in an
Eiffel library. Based on this observation, one may conclude that Java libraries
are better designed for reuse (in terms of ease of understanding) within limits of
this measure. On the other hand, higher WMC values for Eiffel libraries implies
more functionality provided by Eiffel classes that can make them more rewarding
for reuse. Eiffel’s design philosophy of separating query methods (that return a
value about the current state of an object) and command methods (that change
the state of an object) could have contributed to higher WMC in its libraries.

Depth of Inheritance Tree (DIT). Figures 5 to 8 show the percentage of
classes in Eiffel and Java libraries with different depth of inheritance tree values.

From the DIT values it’s clear that Java libraries have a flatter inheritance
structure where as Eiffel libraries have a deeper inheritance structure. In Eiffel
Base, nearly 10% of the classes have 10 or more ancestors which means, to be
able to reuse one of these classes, a programmer needs to understand 10 other
classes in its ancestry. On the other hand, in Java Base, no class has more than
6 ancestors. Looking at the GUI libraries, in Java GUI, only 38% of the classes
have more than one ancestor, whereas, for Eiffel Vision, more than 80% of the

Eiffel Base

7.6
8.2

6.3

4.4
3.2

7.0

5.1
4.4

7.0

1.3

3.2

1.3

3.2

1.3
1.9

0.6 0.6
1.3 1.3 1.3

3.8

1.9 1.9 1.9
0.6 0.6 0.6

1.9 1.9
0.6 0.6

1.3 1.3
0.6 0.6 0.6

1.3
0.6 0.6 0.6 0.6 0.6 0.6 0.6

1.3
0.6 0.6 0.6

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 30 31 33 34 35 36 39 40 42 43 45 46 47 48 50 51 54 68 124 170

WMC (Average:15, Median: 8)

%
 o

f c
la

ss
es

Fig. 1. WMC for Eiffel Base class libraries

178 S. Araban and A.S.M. Sajeev

classes have more than one ancestor. Looking at the average figures, Java classes
have 50% or less ancestry than Eiffel classes. On this measure, Java libraries are
easier to reuse since understanding a class is less dependent on understanding
its ancestors. GUI libraries are one of the heavily used libraries since modern
applications are almost always GUI based. The average depth of inheritance tree
of Eiffel Vision is nearly three times more than the average DIT of Java GUI.

Looking at the DIT and WMC figures together, in order to reuse a Java
class (as opposed to an Eiffel class), a programmer needs to be familiar with
less number of other (ancestor) classes, and each of these other classes have less
number of weighted methods thus favoring understandability considerably.

3.2 Design with Reuse

Depth of Inheritance Tree. Let’s look at the DIT graphs (Figures 5 to 8)
again, this time wearing a different hat: our purpose now is to study design
with reuse that is how a library reuses its own classes. We observe that Eiffel’s
inheritance trees are much deeper than their corresponding Java trees indicating
that an Eiffel library class tend to reuse more of other classes as its ancestors.
Some Eiffel Base classes have up to 13 ancestors, whereas no class in Java Base
has more than 6 ancestors. In OO design, it is well established that inheritance
should only model the is-a relation and not any haphazard or convenient reuse.
This means that the library needs to be very carefully designed in order to
be able to use acceptable inheritance relation to the level Eiffel has achieved.
It could also mean that since the inheritance hierarchy is designed to a much
deeper level, there is possibility of reusing classes at levels up in the hierarchy
to start up other branches (in a multiple inheritance language such as Eiffel this
is straightforward) to expand the library in future with lesser effort than in a
flatter structure as in Java.

Number of Children (NOC). Unlike a DIT that shows how many ancestors
a class has, an NOC shows how many children a class has. Measurement of Eiffel

Java Base

3.3

7.4

22.8

5.0
5.6

4.7
3.8

5.0 4.7 4.4
3.3

1.8
3.0 2.7

1.8 2.1 2.1

0.6

2.1 1.8
0.9

0.3
0.9 0.6

1.2
0.6 0.3

0.9
0.3 0.6 0.9 0.9 0.6 0.6 0.3 0.6 0.3 0.3 0.3 0.3 0.3 0.3

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31 32 33 34 35 39 40 43 46 49 55 59

WMC (Average: 9.2, Median: 6)

%
 o

f C
la

ss
es

Fig. 2. WMC for Java Base class libraries

Reusability Analysis of Four Standard Object-Oriented Class Libraries 179

Eiffel GUI

0.6

9.7

4.1

10.7

6.9

5.0
6.0

4.4
3.8 3.5 3.5

2.5
3.5

2.8
2.2 2.2 1.9 1.9

2.8 2.5

0.9 0.6
1.6

0.6 0.9 1.3 0.9 0.6 0.9
0.3 0.6 0.6 0.9

0.3 0.3 0.6 0.3 0.3 0.3
0.9 0.6 0.3 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 33 34 35 36 37 38 39 40 44 45 46 49 53 55 61 67 77 84 120 122 134 148 165 166

WMC (Average: 14.7, Median: 8)

%
 o

f C
la

ss
es

Fig. 3. WMC for Eiffel GUI class libraries

Java GUI

3.0

6.8

9.1

5.3
6.4 6.4

8.0

4.5

2.3 2.3
3.4 3.4 3.4

5.7

1.9
3.0

0.4

2.7
1.9

1.1
1.9 1.9

0.4

1.9
0.8 1.1

0.4

1.9
0.8 0.4 0.8 0.4 0.4 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 37 38 43 45 49 50 51 53 55 56 61 69 170

WMC (Average: 12.4, Median: 9)

%
 o

f C
la

ss
es

Fig. 4. WMC for Java GUI class libraries

Base and GUI libraries (Figures 9 and 11) shows a similar pattern: more than
50% of the classes have one or more children and on average, the same level of
dependencies among classes (less than 2 children per class). These figures suggest
that Eiffel classes are reused more by subclassing classes in the libraries.

Therefore, Eiffel class libraries are more sensitive to changes made to a class
since it could affect relatively larger number of children. Eiffel handles this by
defining pre- and post-conditions and invariants for methods and suggesting that
changes made to a class should satisfy these conditions on which other classes
rely on.

On the other hand, more than 80% of classes in both Java Base and GUI
libraries (Figures 10 and 12) have no child (i.e., they are terminal nodes) and
their average NOC values are well under 1. Therefore, changes to classes in Java
libraries have little effect on other classes suggesting easier library maintenance.

The flatter inheritance structure of Java means there is a small number of
classes with a large number of children with a class having up to 128 children in
Java Base, where as Eiffel’s more deeper inheritance structure means that the
number of children are divided more uniformly between classes, thus the largest
number of children for a class is only 7 in Eiffel base. The average values are

180 S. Araban and A.S.M. Sajeev

Eiffel Base

14.4 15.6 17.5

6.9 6.9
10.0

6.9 7.5
3.1 4.4 2.5 1.9 0.6

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13
DIT (Average: 4.6, Median: 4)

%
 o

f
cl

as
se

s

Fig. 5. DIT for Eiffel Base class libraries

Java Base

4.5

37.4

23.4
17.2

11.9
5.6

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

DIT (Average: 3.1, Median: 3)

%
 o

f
C

la
ss

es

Fig. 6. DIT for Java Base class libraries

similar for Java and Eiffel (with Eiffel value being slightly higher), however, the
average values do hide the difference in the distribution that is observable in the
graphs.

Coupling Between Object Classes (CBO). The coupling between object
classes is shown in Figures 13 to 16. Java libraries have a higher CBO value
than Eiffel libraries. A quarter of Eiffel base classes have no coupling, where as
only 4% of Java Base classes are coupling free. While coupling does not exceed
beyond 7 classes for Eiffel Base, it can go up to 21 classes in Java Base.

The average coupling values are higher in the GUI libraries than in Base
libraries, indicating that GUI classes need to use other classes more often than
the Base classes. A small percentage of classes (0.2%) in Eiffel Vision has the
highest coupling value of 43, as opposed to only 7 in Eiffel Base, and similarly
0.4% of Java GUI classes have the highest coupling value of 53 as opposed to
21 in Java Base. Here again, Eiffel has less average coupling (3.1%) than Java
(4.7%). Furthermore, 35% of Eiffel Vision classes do not have coupling where as
only 7% of Java GUI classes are coupling free.

Reusability Analysis of Four Standard Object-Oriented Class Libraries 181

Eiffel GUI

19.3 19.1

8.0 11.3 12.5 10.1
6.4 4.0 2.8 3.5 2.8

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

DIT (Average: 4.2, Median: 4)

%
 o

f
C

la
ss

es

Fig. 7. DIT for Eiffel GUI class libraries

Java GUI

62.1

26.1

9.5
1.9 0.4

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

DIT (Average: 1.5, Median: 1)

%
 o

f
C

la
ss

es

Fig. 8. DIT for Java GUI class libraries

Here we observe trends that are opposite to those observed in the case of
DIT . It seems that the lower the DIT the higher the CBO value. It is possible
that Java libraries are compensating the smaller inheritance hierarchy by using
higher coupling between classes.

As discussed before, coupling through client/server relation is a more com-
mon method of reuse than inheritance, since client/server coupling can be used
for any relation other than is-a. It may be worth investigating Java libraries
further to see whether is-a relations are also implemented using client-server
coupling in Java to get these higher values.

4 Conclusions

Several surveys comparing OOLs are published (e.g. [8], [20]). There are also
several studies on reusability of object-oriented systems (e.g. [10], [5]). However,
studies on reusability of class libraries are rare.

We have analysed class libraries of two object-oriented languages, Eiffel and
Java, to better understand them in terms of Ease of Reuse and Design with

182 S. Araban and A.S.M. Sajeev

Eiffel Base

44.7

20.8
15.1

10.7
5.0 2.5 0.6 0.6

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

NOC (Average: 1.2, Median: 1)

%
 o

f
cl

as
se

s

Fig. 9. NOC for Eiffel Base class libraries

Java Base

79.9

9.1
3.2 1.2 1.2 1.8 0.6 1.2 0.3 0.6 0.3 0.3 0.3

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 13 15 126

NOC (Average: 1.0, Median: 0)

%
 o

f
C

la
ss

es

Fig. 10. NOC for Java Base class libraries

Reuse. We took a set of libraries representing basic and graphical user interface
classes. The metrics we used were from Chidamber and Kemerer.

Ease of Reuse tells us whether the library is structured in a way that it is easy
for programmers to understand, locate and use the classes. Design with Reuse,
on the other hand, examines the level of reuse of classes within the library itself.
Our observations are summarized in Table 2. In the table a plus sign indicates
that the corresponding language favors the criteria, and a minus indicates the
opposite.

Table 2. Summery of reusability analysis of Eiffel and Java libraries

Language Ease of Reuse Design with Reuse
 Ease of

Coding
Class
Size

Deep
Hierarch
y

Number of
Ancestors

Number of
Children

Coupling
Between
Classes

Eiffel + - - + + -
Java + + + - - +

Reusability Analysis of Four Standard Object-Oriented Class Libraries 183

Eiffel GUI

46.7

27.8

11.6
4.0 2.4 2.4 1.7 1.7 0.5 0.5 0.5 0.2 0.2

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 11 18 33

NOC (Average: 1.3, Median: 1)

%
 o

f
C

la
ss

es

Fig. 11. NOC for Eiffel GUI class libraries

Java GUI

80.5

6.6 7.4
1.8 1.5 1.1 0.4 0.4 0.4

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 8 9 141

NOC (Average: 1.0, Median: 0)

%
 o

f
C

la
ss

es

Fig. 12. NOC for Java GUI class libraries

Java class libraries get a plus for all three criteria we examined for Ease of
Reuse, while Eiffel libraries get a plus for only one of the three criteria. This
is because Eiffel libraries tend to have higher weighted methods per class and
deeper inheritance hierarchy of classes, thus requiring more effort on the pro-
grammer’s part to understand the library. For example, while Eiffel libraries with
many closely related classes (e.g. Dynamic List, Arrayed List, Multi Array List,
Part Sorted List, Sorted List, Two Way List, Part Sorted Two way List,
Sorted Two Way List, etc.) [15] may increase the probability of a programmer
finding exactly the class she wants, in general, they may increase the time and
effort required to understand all these variety provided.

On Design with Reuse, Eiffel class libraries get a plus for two of the three
criteria we employed, where as Java libraries get a plus for only one of the three.
This is again because, Eiffel employs reuse by inheritance heavily in its library. A
typical class in Eiffel has a large number of ancestral and/or descendent classes,
whereas a large number of classes in Java have no child. Java libraries, however,
tend to have a higher reuse in the form of client/supplier relations. Since reuse
by inheritance can only model the is-a relation, it requires much care to design

184 S. Araban and A.S.M. Sajeev

Eiffel Base

25.8
22.0

20.1

10.7
12.6

4.4
0.6

3.8

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7

CBO (Average: 2.0, Median: 2)

%
 o

f
cl

as
se

s

10

Fig. 13. CBO for Eiffel Base class libraries

Java Base

4.2

30.0

13.6

21.1

7.4 7.1
4.5 3.9 3.0 1.8 0.9 1.2 0.6 0.3 0.3 0.3

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 18 21

CBO (Average: 3.2, Median: 3)

%
 o

f
C

la
ss

es

Fig. 14. CBO for Java Base class libraries

Eiffel GUI

35.4

7.3 8.0 8.5
10.4 10.8

4.5
6.1

3.8
1.7 0.9 0.5 0.2 0.7 0.2 0.2 0.2 0.2 0.2

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 21 22 23 43

CBO (Average: 3.1, Median: 2)

%
 o

f
cl

as
se

s

Fig. 15. CBO for Eiffel GUI class libraries

libraries with heavy use of inheritance; otherwise, one could end up with spurious
classes with no use other than being an intermediary between ancestors and
descendants. Clever use of inheritance hierarchy allows the library to be easily
extendible by starting new branches in the hierarchy.

Reusability Analysis of Four Standard Object-Oriented Class Libraries 185

Java GUI

7.6

13.3
16.3

17.8

8.3
5.3

7.6 7.2
4.9

1.5 1.9 2.3 1.1 1.1 0.4 1.1 0.4 0.4 0.4 0.4 0.4 0.4
0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 21 22 27 44 53

CBO (Average: 4.7,Median: 3)

%
 o

f
C

la
ss

es

Fig. 16. CBO for Java GUI class libraries

In summary, Eiffel and Java libraries have employed different design princi-
ples which have resulted in giving different kinds of benefits to their users. While
it is not easy to state which principles are better, it may be worth conducting
a further study to see whether these principles played a role in Eiffel being bet-
ter appreciated by the research community, and Java being better accepted by
programmers of the commercial world.

Acknowledgments

We would like to thank the anonymous referees for their comments during the
evaluation process of this paper. This work was supported in part by an ARC
Discovery Grant (grant number DP0209483).

References

[1] A.J. Albrecht. Measuring application development productivity. In IBM Appli-
cations Development Symp, 1979.

[2] J. Bieman and S. Karunanithi. Candidate reuse metrics for object oriented and
ada software. In IEEE-CS 1st International Software Metrics Symposium, 1993.

[3] R. F. Boisvert, J. Dongarra, R. Pozo, K. Remington, and G. Stewart. Oops:
an object-oriented particle simulation class library for distributed architectures.
Concurrency: Practice and Experience, 10(11-13):1117–1129, 1998.

[4] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476 – 493, 1994.

[5] R.G. Fichman and C.F. Kemerer. Object technology and reuse: Lessons from
early adopters. IEEE Computer, 30(10):47–59, 1997.

[6] William Frakes and Carol Terry. Software reuse: Metrics and models. ACM
Computing Surveys, 28(2):415–435, 1996.

[7] T.E. Hastings and A.S.M. Sajeev. A vector based approach to software size
measurement and effort estimation. IEEE Transactions on Software Engineering,
27(4):337–350, 2001.

186 S. Araban and A.S.M. Sajeev

[8] R. Henderson and B. Zorn. A comparison of oo programming in four modern
languages. Software Practice and Experience, 24(11):1077–1095, 1994.

[9] B. Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity. Prentice-
Hall, 1996.

[10] M. Hitz. Measuring reuse attributes in object-oriented systems. In Int. Conf. on
Object Oriented Info. Systems, Dublin,Ireland, 1995.

[11] C.S. Horstmann and G. Cornel. Core Java. Sunsoft Press, Mountain View,
California, 1997.

[12] I. Jacobson. Software Reuse: Architecture, Process and Organization for Business
Success. ACM Press, 1997.

[13] H. Kage and H. Sttzel. Hume: An object oriented component library for generic
modular modelling of dynamic systems. In M. Donatelli, C. Stockle, F. Villalobos,
and J. Villar, editors, Modelling cropping systems, pages 299–300, Lleida, 1999.
European Society of Agronomy.

[14] B. Meyer. Eiffel: The Language. Prentice-Hall, 2nd edition, 1992.
[15] B. Meyer. Reusable Software: The Base Object-Oriented Component Libraries.

Prentice-Hall, 1994.
[16] B. Meyer. Object-Oriented Software Construction. Prentice Hall PTR, Upper

Saddle River, New Jersey, 2nd edition, 1997.
[17] R. Pozo. Template numerical toolkit. Technical report, National Institute of

Standards and Technology, 2002.
[18] R. Prieto-Diaz. Status report: software reusability. IEEE Software, pages 61–66,

1993.
[19] John V. W. Reynders, David W. Forslund, Paul J. Hinker, Marydelland Tholburn,

David G. Kilman, and William F. Humphrey. Developing numerical libraries in
java. Computer Physics Communications, 87(1-2):212–224, 1995.

[20] H.W. Schmidt and S. Omohundro. Clos, eiffel and sather: A comparison. Technical
report, International Computer Science Institute, 1991.

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 187 – 200, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Validation of an Approach for Quantitative
Measurement and Prediction Model

Ki-won Song, Jeong-hwan Park, and Kyung-whan Lee

School of Computer Science and Engineering, Chung-Ang University, Korea
{kwsong, jhpark, kwlee}@object.cau.ac.kr

http://www.object.cau.ac.kr

Abstract. Software organizations are in need of methods to understand, struc-
ture, and improve the data they are collection. We have developed an approach
for use when a large number of diverse metrics are already being collected by a
software organization. The Approach combines two methods. One looks at an
organization’s measurement framework in a goal-oriented fashion and the other
looks at it in the performance pyramid by quantitative method. We present
model-based performance prediction at software development time in order to
optimize a project of organization and strengthen control of it and thus, accom-
plish its objectives by determining its process capability and project capability
through the proposed three models(PCM, ECM, PPM) by developing strategies
to improve the process and, by planning the most suitable project to its vision
with Project Prediction Model (PPM).

1 Introduction

Recently, S/W companies have tried to have an edge on other competitors in securing
more extensive market and maximizing financial profits.

To this end, they should develop strategies suitable to their vision and implement
projects to measure performance attributes. Lynch and Cross suggested a performance
pyramid for developing strategies needed to accomplish an organization’s vision and
measuring whether the organization accomplished its vision.

This paper measures quality and delivery attributes for an organization’s external
effectiveness and, cycle time and waste attributes for its internal efficiency. It also
measures process capability and project capability through PCM by completing and
analyzing a questionnaire based on GQM (Goal Question Metrics) to find a way to
improve the process.

Based on the analysis of results, ECM (Earned Value Calculation Model) can be
designed to analyze financial performance (earned value) through which effective
process improvement plan and project plans suitable to the organization’s vision can
be developed.

In order to predict the project suitable to the organization’s vision and optimize the
process with analysis results gained through the ECM, this paper also suggests PPM
which can predict, based on the organization’s project-performing capability, how
much manpower, time and capital should be invested to the project and what degree
of quality the developed product will have.

188 K.-w. Song, J.-h. Park, and K.-w. Lee

2 Basic Study

2.1 Why is Earned Value Needed for IT Business?

Promoting resources-managing ability to effectively invest IT resources and maxi-
mize their effect is becoming an essential field in the IT industry [2] [3].

IT emerged as a key area to reengineer and improve business process, along with
using computers. Large corporations including IBM, Ford, and GE are enjoying 80%
more effect from business process reengineering using IT than from the improvement
just using computers.

2.2 Calculation Procedure for Earned Value

The best way to calculate earned value is to accumulate data on the project to be im-
plemented and conform to the following procedures[2].

Calculation Procedures for Earned Value

(1) Set objectives suitable to your organization’s vision.
(2) Complete the questionnaire to find out the attributes helpful

to improve the process
(3) Develop models and methods to measure attributes for evaluating

accomplishment of the objectives.
(4) Identify the alternatives and measures through analysis

2.3 GQM (Goal-Question-Metrics) Process

GQM process is a series of procedures as follows:
Set an organization’s goals through GQM approach, Set goals of project in each

area, Make questions and develop metrics measure accomplishment of the goals using
the metrics. As shown in <Figure 1>, GQM process is generally composed of vision,
objectives, and areas belonging to external effectiveness or internal efficiency [10].

For example, if an organization’s vision is improvement of public recognition on it,
it should concentrate on market shares rather than on financial performance, and put
its priority on customer satisfaction and flexibility rather than on flexibility and pro-
ductivity[1].

Fig. 1. Lynch and Cross’s Performance Pyramid

 Validation of an Approach for Quantitative Measurement and Prediction Model 189

In order to satisfy customers, quality and delivery should be more emphasized than
cycle time and waste.

Quality and delivery is goals to measure external effectiveness while cycle time
and waste is to measure internal efficiency [1].

Here, goals are set again in each area, strategies for process improvement are de-
veloped through GQM approach, and measurement is carried out [11].

2.4 GQM Approach

GQM approach involves three steps.
First is conceptual step. It consists of elements such as object, purpose, viewpoint

and focus. In this step, major goal are set. Second is operational step. In this step,
questions are derived from the goals that must be answered in order to determine if
the goals are achieved. Third is quantitative step in which proper answers are given to
the questions.

Through the three steps, metrics system is made. These metrics can be used as a
measurement tool [10] [11] [17] [18].

3 PCM (Project Capability Model)

This section suggests PCM which can measure an organization’s capability through
completion and analysis of questionnaire.

PCM calculates project-performing capability of an organization with GQM ap-
proach regarding each of 4 performance attributes in the performance pyramid (Lynch
and Cross).

GQM process is a series of procedures as follows:

Set an organization’s goals through GQM approach
Set goals of project in each area

Make questions and develop metrics measure accomplishment of the goals using
the metrics. Based on the performance pyramid, GQM quantitative questionnaire is
made which enables calculation of an organization’s capability and earned value by
using GQM approach. GQM quantitative questionnaire is composed of items with
which external effectiveness and internal efficiency of an organization can be meas-
ured. For evaluation of external effectiveness, performance attributes like quality and
delivery are analyzed and for evaluation of internal efficiency, cycle time and waste
are analyzed. In each area above, project goals are set again, strategies for process
improvement are developed through GQM approach and measurement is carried out.

For each of 4 goals including quality, delivery, cycle time and waste, questions are
made and then metrics are completed.

3.1 Data Collecting Method

This paper uses data from questionnaires on 20 tasks of corporations which are col-
lected from SPICE (SW Process Improvement & Capability determination) assess-
ment. Data gained from the answers to the questionnaires are revised according to
some defined rules to secure reliability of data on the assumption of T-distribution.

190 K.-w. Song, J.-h. Park, and K.-w. Lee

Considering possible miscommunication between respondents and questionnaires and
problem of representing quantitative data, data out of confidence intervals are revised
according to revision rules.

3.2 GQM Quantitative Questionnaire from Project Meta Data

This section proposes GQM quantitative questionnaire made from general meta data.
Procedures for making the questionnaire involving three steps: setting goals; giving

questions; gaining metrics.
First is conceptual step. It consists of elements such as object, purpose, viewpoint

and focus. In this step, major goal are set.
Second is operational step. In this step, questions are derived from the goals.
Third is quantitative step in which proper answers are given to the questions.
Through the three steps, metrics system is made. 20 measurable metrics were made

for 8 questions. GQM results gained though three steps are shown in <Table 1>

Table 1. Metric Results based on GQM

Defect rate of products

Defect rate of technical documents.

Defect rate of codes

Defect density
(In the project, how densely defect are found and properly dealt with.)

Defect management rate.

Quality
(To improve quality of product up
to level of satisfying customers)

Impact requirement
(How much impact customer’s requirement of change has on project?)

Requirement change rate

General on-schedule-rate

On-schedule-rate at planning/analysis stage

On-schedule-rate at design stage

On-schedule-rate at implementation stage

Delivery
(Shorten time needed to deliver

product to customers)

Delivery time
(Are products delivered to customers on schedule?)

On-schedule-rate at test stage
Man-Month rate at planning/analysis stage

Man-Month rate at design stage

Man-Month rate at implementation stage

Cycle time
(Shorten total processing time)

Man-Month: Effort distribution
(To shorten cycle time, optimal MM is needed. Is MM optimized at each

stage?)
Man-Month rate at test stage
Code productivity per person

Documentation scale per code
Productivity

(What is current productivity of project?)
Documentation scale per person

Reuse (How many codes are reused?) Code reuse rate

Waste
(Reduce waste of available
resources when proceeding

project)
Rework (How much time is spent for rework?) Rework hours

Meta data is deprived from questions and metrics gained through GQM approach.
Each factor of measure method of PCM model needed to calculate metrics is meta
data. And measure method of each metric is a capability measure model factor of
PCM. Meta data gained like this compose answers to GQM quantitative question-
naire.

3.3 Project Capability Measurement Model

This section proposes PCM to calculate project capability in terms of external effec-
tiveness and internal efficiency of an organization.

Input data of this model is data collected from GQM questionnaire as suggested in
3.2. Factors of PCM to measure a project capability of an organization for 4 goals are
shown in <Table2>

 Validation of an Approach for Quantitative Measurement and Prediction Model 191

Table 2. Factors of PCM to measure a project capability in terms of external effectiveness of an
organization

Question Metric Capability Measure Factor
Defect rate of products Total number of defects

Defect rate of technical documents.
(Requirement specification + design specification) number of

defects
 and total number of pages of outcome

Defect rate of codes Number of code defects, total SLOC

Defect density
 (Quality)

Defect management rate. Number of complete correcting defects.
Impact requirement (Quality) Requirement change rate Number of requirement change, total number of requirement

General on-schedule-rate Total delivery days, planned delivery days

On-schedule-rate at planning/analysis stage
Actual delivery days, planned delivery days at planning/analysis

stage
On-schedule-rate at design stage Actual delivery days, planned delivery days at design stage

On-schedule-rate at implementation stage Actual delivery days, planned delivery days at implementation stage

Delivery time
(Delivery)

On-schedule-rate at test stage Actual delivery days, planned delivery days at test stage
Man-Month rate at planning/analysis stage MM at planning/analysis stage

Man-Month rate at design stage MM at design stage
Man-Month rate at implementation stage MM rate at implementation stage

Man-Month
: Effort distribution

(Cycle time)
Man-Month rate at test stage MM at test stage

General effort correspondence Actual MM and planed MM, general MM
Effort correspondence rate at planning/analysis

stage
Actual MM and planed MM at planning/analysis stage

Effort correspondence rate at design stage Actual MM and planed MM at design stage
Effort correspondence rate at implementation

stage
Actual MM and planed MM at implementation stage

Man-Month
: Effort correspondence

(Cycle time)

Effort correspondence rate at test stage Actual MM and planed MM at test stage
Code productivity per person Effort SLOC
Documentation scale per code Number of document’s page

Productivity
(Waste)

Documentation scale per person Total distributed effort
Reuse (Waste) Code reuse rate Number of reused SLOC

Actual output to planned output ratio Actual SLOC, Planned SLOC
Rework (Waste)

Rework rate cause by defects Rework hours, total spent hours

Calculation forms to measure a project capability of an organization in terms of ex-
ternal effectiveness and internal efficiency for 4goals are shown in <Table3>

Table 3. Calculation forms to measure a project capability of an organization in terms of exter-
nal effectiveness and internal efficiency

PCM(q): quality effectiveness score ((100)) / 4eachdefect rate defect management rate− +
External effectiveness

PCM(qd) = (PCM(q)+PCM(d)/2
PCM(d): schedule effectiveness score (100) /5on schedulerateat eachstage−

PCM(c): effort efficiency score () / 4effort correspndence rate at each stage
Internal efficiency

PCM(c,w)=(PCM(c))+PCM(w)/2
PCM(w): resource efficiency score () (2 (100 []) / 6all factors rework per code− × −

By calculating PCM for external effectiveness (q, d, quality and delivery) and
PCM for internal efficiency(c, w, cycle and waste), benchmarking other competitors
becomes possible. In addition, it also shows the degree of external effectiveness im-
provement.

But effective process strategies cannot be developed with organization’s capability
alone.

For example, in the case that PCM(q):85>PCM(d) : 75, no matter what you select
out of two strategies(to heighten quality capability from 85 to 90 or to heighten time
capability from 75 to 80) in order to increase external effectiveness, PCM result is
same because both strategies is to increase 5.

192 K.-w. Song, J.-h. Park, and K.-w. Lee

But if you can get 1000 won from increased quality of 5 and get 500 won from in-
creased delivery time of 5, it is not effective to increase external effectiveness by
simply improving factors with lower figure. That is because it excludes the cost/profit
the organization can get.

Therefore, in order to decide which capability should be strengthened by compar-
ing quality capability and delivery capability of PCM, earned values should be calcu-
lated in fields of quality and delivery.

4 ECM (Earned Value Calculation Model)

This section suggests ECM with which project’s cost for external effectiveness can be
calculated, using the project capability results gained from PCM. Calculation proce-
dure of ECM is as follows and the composition is shown in <Figure 2>

Calculation procedures of ECM

1. Calculate project capability with PCM.
2. Measure cost factors of quality and delivery belonging to external

effectiveness of organization.
3. Design and calculate ECM for external effectiveness by using the

measured values above.
4. Calculate expected cost for project improvement through analysis of

the calculated results above.

Fig. 2. Composition of ECM

<Table 4> provides ECM to analyze project cost, using PCM value of organiza-

tion, with project input from GQM quantitative questionnaire.
By using PCM results and expected gains from improvement, effective strategies

for external effectiveness of organization can be developed.
All that PCM and ECM can calculate is only current project capability and ex-

pected gains from improvement.
For example, when a strategy to increase delivery time by 5 is selected because the

gains from shortened delivery time by 5 is larger than gains form improved quality,
you cannot expect how much cost will be spent or how much days will be needed for
the project.

Quantitative GQM Questionnaire

PCM (Project Capability Model)

ECM (E.V. Calculation Model)

CEO

PM in Project

Meta data

Cost Analysis result of Project
management effectiveness

Capability Score

Project Information

 Validation of an Approach for Quantitative Measurement and Prediction Model 193

Therefore, this paper also suggests PPM(Project Predict Model) which can calcu-
late schedule and manpower for future project by analyzing PCM and ECM results.

Table 4. ECM for project cost analysis

Goal Earned Value ECM
Total cost for defect management Rework hours/ 184 x average monthly salary

Cost per defect Total cost for defect management/ total number of defects
Sigma level of current process NORMSNIV(1-code defect rate/100)+1

Number of defects which should be found to heighten
sigma level of current process by one sigma.

Total number of SLLOC x code defect rate - (total number
of SLOC(code defect rate-(1-NORMSDIST(sigma level of

current process-1.5+1)))
Quality

Cost for managing the defects found for 1 sigma level-
up

Number of defects which should be found to heighten
sigma level of current process by one sigma. Cost per

defect
Gains
from

improve-
ment

Cost/profit gained when a person to manage 100%
increased number of defects Rework hours/368 average monthly salary

Total project cost Project cost per day x total actual project days + total defect
management cost

Project cost per day Average salary/23((total MM 23) /total actual project day)

Total loss caused by difference between plan and actual
result

Sum of loss at each stage + total schedule difference project
cost per day

Loss caused by difference between plan and actual
result at planning/analysis stage

Schedule difference at planning/analysis stage * Project
cost per day

Loss caused by difference between plan and actual
result at design stage Schedule difference at design stage * Project cost per day

Loss caused by difference between plan and actual
result at implementation stage

Schedule difference at implementation stage * Project cost
per day

Delivery

Loss caused by difference between plan and actual
result at test stage Schedule difference at test stage * Project cost per day

Gains
from

improve-
ment

Gains caused when project is implemented on schedule. Total project cost – total loss caused schedule difference

Project cost at planning/analysis stage (MM and average salary at planning/analysis stage)+ cost
for defect management at planning/analysis stage

Project cost at design stage (MM and average salary at design stage)+ cost for defect
management at design stage

Project cost at implementation stage (MM and average salary at implementation stage)+ cost for
defect management at implementation stage

Project cost at test stage (MM and average salary at test stage)+ cost for defect
management at test stage

Gain/loss cause by difference between plan and per-
formance at planning/analysis stage

(Planned MM – actual MM at planning/analysis stage)
average salary

Gain/loss cause by difference between plan and per-
formance at design stage

(Planned MM – actual MM at design stage) * average
salary

Gain/loss cause by difference between plan and per-
formance at implementation stage

(Planned MM – actual MM at implementation stage) *
average salary

Gain/loss cause by difference between plan and per-
formance at test stage (Planned MM – actual MM at test stage) * average salary

Cycle
Time

Total gain/loss cause by difference between plan and
performance (Total planned MM – actual MM) * average salary

Gains
from

improve-
ment

Gains caused by improved productivity
Total MM: total cost = 1MM: x (x= cost when reducing

number of people by one)
100:272 = 1:Y (1% is for how may people?)

Earned value from reuse Total SLOC number-Effort SLOC number)/400* (Total
project days/184) * * average salary

Cost caused by not doing reuse Earned value from reuse + total project cost Waste

Earned value from reuse of 1SLOC Total earned value from reuse
Gains
from

improve-
ment

Gains caused by distributing manpower as planned
Gains when project is implemented 100% as

planned/capability to be increased for hitting the target of
100%

4.1 PPM (Project Predict Model)

This section suggests PPM which can predict schedule, cost, manpower, and quality
of future project by using PCM results.

This model is designed to predict schedule, cost, and manpower when an organiza-
tion plans a new project by using PPM and PCM results and earned value from ECM.

194 K.-w. Song, J.-h. Park, and K.-w. Lee

Calculation Procedures and Composition of PPM are provided in <Table 5> and
<Figure 3>

Table 5. Calculation Procedure of PPM

1. Calculate project capability through designed PCM model.

2. Calculate expected gains from improved project by using ECM for

external effectiveness.

3. Design a project predict model for schedule, cost, manpower,

based on PCM and ECM results

4. Calculate project predict value for effective strategies to improve
quality and delivery, based on experience of individual organization

Fig. 3. Composition of PPM

PPM basically has assumptions as follows.

Assumptions of PPM

Assumption 1: a new project is planned through PPM
Assumption 2: The organization to implement the new project already

answered GQM quantitative questionnaire and thus has
PCM and ECM results.

Assumption 3: The new project belongs to the same team within the
organization as the project for which GQM questionnaire
was answered.

Assumption 4: Scale of the project is predicted. (expected SLOC)
Assumption 5. 2 out of 3 factors(schedule, cost, manpower) has been

determined.

Ex) implement the project whose scale is 17, 721 SLOC with 50M/M within 6 months.(manpower and

schedule has been determined) How many days will be spent? (Cost has not been determined)

On the assumption like this, PPM (project predict model) can be used in following
3 cases. It is assumed that SLOC has been determined for all cases.

Quantitative GQM Questionnaire

PCM (Project
Capability Model)

ECM (E.V. Calculation Model) Performance capability of Project

CEO of OU

PM in Project

Meta data

Cost Analysis result of Project
management effectiveness

Capability Score

Project
Information

Input expected
schedule, cost and
manpower of a new
project (input just two

PPM
(Project

Prediction
Model)

The other factor
required to know and the
predicted number of
defects to be detected
when completed.

 Validation of an Approach for Quantitative Measurement and Prediction Model 195

Cases in which PPM can be used

Case 1 : total expected cost and man-month have been known,
but total expected schedule has not been known.

Case 2 : total expected schedule and man-month have been known,
but total expected cost has now been known.

Case 3 : total expected schedule and cost have been known,
but total expected man-month has now been known.

PPM for expected schedule, cost, manpower of a project is described in <Table 6>

Table 6. PPM (Project Predict Model)

PPM(Project Predict Model)

Case 1: total scheduled days = exp 1
400

100exp 23
100

total ected SLOC
MM rate

man month rate at implementation stratege
ected MM

×

−× ×

Case 2: total expected cost=project cost per day x total scheduled days
Case 3: total expected manpower=project cost per day x total scheduled days/average salary

Additional values Calculation Model
Predicted number of defects Total expected SLOC (product defect rate/1000) [to calculate as KSLOC]

Defect management cost Total expected cost (product defect rate/1000) [to calculate as KSLOC]
Rework hours Total predicted defects/defect management rate per hour

Pure project cost Total predicted cost - defect management cost
Case 1 Total expected cost/total scheduled days

Project cost per day
Case 2

Project cost per day= (salary/23) (total MM 23)/total schedule days
[(salary/23): daily pay per person]

5 Case Study of PCM and ECM, and Verification of Reliability
for PPM

5.1 Case Study of PCM and ECM

This section verifies reliability of PCM and ECM through case study using data on
GQM quantitative questionnaires collected from SPICE assessments during 2003 to
2004 period.

This paper uses data of three organizations as project data.<Table 7> provides spe-
cifics of each of the three organizations

Table 7. Specifics of each organization

 A company B company C company

Nature of task Development task Commercialization task Development task

Existence of mother task Exist Exist Not exist

Project Cost
About 80 million won

(about 70 thousand USD)
About 500 million won About 100 million won

Motive of project
For commission from other

organization.
For commission from other

organization.
For internal study of the

organization

Project domain Mobile Computer Multimedia

This paper used Excel as a tool for case study

196 K.-w. Song, J.-h. Park, and K.-w. Lee

5.2 Verification of Reliability Using PCM and ECM Cases

For case study, this paper used data which were collected from GQM questionnaires
of three companies by using Excel as an automation tool.

For example, calculation result of A company is shown in <Figure 4>

 Validation of an Approach for Quantitative Measurement and Prediction Model 197

Fig. 4. PCM, ECM, PPM results of A company

Table 8. Analysis results of case studies of PCM

 PCM capability score Capability score of each goal
82.09 66.64 74.36

PCM(QD) Quality > Delivery
54 37

A company
45.50

PCM(CW) Cycle Time > Waste
88.97 71.34 80.16

PCM(QD) Quality > Delivery
69.12 47.23

B company
58.18

PCM(CW) Cycle Time > Waste
87.42 85.9 86.66

PCM(QD) Quality > Delivery
59.49 86.57

C company
73.03

PCM(CW) Cycle Time < Waste

198 K.-w. Song, J.-h. Park, and K.-w. Lee

Table 9. Analysis results of case studies of ECM

 Gains from Quality
improvement

Gains from Delivery
improvement

Gains from Cycle Time
improvement

Gains from Waste im-
provement

1,027,174 won 55,897,345 won 630,385 won 928,543 won
A company

Quality < Delivery Cycle Time < Waste
4,500,152 won 398,897,460 won 1,638,600 won 5,522,763 won

B company
Quality > Delivery Cycle Time > Waste

1,250,000 won 17,537,021 won 212,286 won 1,029,000 won
C company

Quality < Delivery Cycle Time < Waste

Reliability verification results of 3 companies through case studies are as follows.
<Table 8> and <Table 9> are summarized results of case studies.

A company should develop a strategy to reduce delivery time. As a result of checking
ECM (q,d)results to confirm whether the strategy is effective, it was found that gains
from delivery improvement is larger than gains from improvement in other fields.
Therefore, if there is 100 % improvement in the field of delivery, 55,897,345 won can
be gained. In addition, PPM also showed reliable results. Through these case studies,
two effects can be expected. First, project capability can be predicted based on perform-
ance attributes before starting project. Second, Earned value (E.V.)’s reliability can be
verified by comparing the E.V. calculated from ECM and values for SPI (Software
Process Improvement) effects obtained from answers to GQM and finding the cause of
difference through difference analysis. Results through Comparison and analysis of
ECM results and relevant SPI effects items are specified in <Table 10>

Table 10. Comparison results of ECM results and SPI effects items

Capability score Value for SPI effects from answers to GQM
Quality Delivery Cycle Waste Quality Delivery Cycle Waste

A company 82.09 66.64 54 37 42% 35% 28% 20%
B company 88.97 71.34 69.12 47.23 45% 38% 32% 25%
C company 87.42 85.9 59.49 86.57 44% 42% 30% 43%

As shown in Table 10, the results measured through ECM model and SPI effects
felt by the developers in the organization are the same.

The value flow of efficiency and effectiveness is as shown in <Figure 5>.

Fig. 5. Value Flow of efficiency and effectiveness

6 Conclusion and Hereafter Research

In this paper, case studies were implemented based on 3 data collections. Therefore,
the reliability analysis was carried out on the assumption of T-distribution. If number

 Validation of an Approach for Quantitative Measurement and Prediction Model 199

of data collection exceeds 30, data reliability can be analyzed on assumption of F-
distribution because data of all models that can be analyzed by F-distribution shows
normal distribution. In this case, 4 performance attributes (quality, delivery, cycle
time, and waste) are represented by using each typical performance variables.

By using GQM_based questionnaire we can analysis and define quality and deliv-
ery for the external effectiveness, and cycle time and waste for the internal efficiency
to performance pyramid as the following equations.

Quality : Q = Rq (typical cost performance), Delivery : D = Rd (typical cost performance)
Cycle : C = Rc (typical cost performance), Waste : W = Rw (typical cost performance)

Rq, Rd, Rc and Rw are functional relation for each quality, delivery, cycle, and waste.

To maximize benefit of the equation for the external effectiveness, we can calcu-
late the benefit by using the following partial differential equation.

0
F

Rq Rd

∂ =
∂ ×∂

And to maximize benefit of the equation for the internal efficiency, we can calcu-
late the benefit by using the following partial differential equation.

0
F

Rc Rw

∂ =
∂ ×∂

References

1. Richard L.Lynch, Kelvin F. Cross, "Measure up!", 1995, Blackwell.
2. Kyung-whan Lee, "Modeling for High Depending Computing", The fifth Korea Informa-

tion Science Society’s Software Engineering Association,Feb.20. 2003
3. Kyung-whan Lee, “ROI of IT Business”�, The federation of Korean Information Indus-

tries, 2003. 5
4. Kyung-whan Lee, “Quantitative Analysis for SPI”�, Corporation seminar, Feb. 17. 2003.
5. Boehm, C. Abts, A.W. Brown, S. Chulani, B. Clark, E. Horowitz, R. Madachy, D. Riefer,

and B. Steece, "Software Cost Estimation with COCOMO II", Prentice Hall, 2000.
6. Steece, B., Chulani, S., and Boehm, B., "Determining Software Quality Using

COQUALMO," in Case Studies in Reliability and Maintenance, W. Blischke and D.
Murthy, Eds.: Wiley, 2002

7. Mark C. Paulk et al, "The Capability Maturity Model Guidelines for Imporving the Soft-
ware Process, CMU/SEI, 1994

8. ISO/IEC JTC1/SC7 15504: Information Technology-Software Process Assessment, ISO
TR, ver.3.3, 1998

9. KSPICE (Korea Association of Software process Assessors), SPICE Assessment Report
http://kaspa.org, 2002 2003

10. V. R. Basili, G. Caldiera, H. D. Rombach, "Goal Question Metric Paradigm", Encyclope-
dia of Software Engineering, John Wiley & Sons, Volume 1, 1994, pp. 528-532.

11. Frank Van Latum, Rini Van Soligen, "Adopting GQM-Based Measurement in an industrial
Environment", 1998, IEEE software

12. Young-jun Yoon, “Easy 6 sigma- Renovation of management quality”, Future manage-
ment technique consulting, 1998.

200 K.-w. Song, J.-h. Park, and K.-w. Lee

13. Tim Kasse, "Action Focused Assessment for software process improvement", Artech
House, 2002.

14. Williams A. Florac, Anita D. Carleton, "Measuring the software process", 1999, SEI Se-
ries, Addison Wesley.

15. Bohem, “Software Cost Estimation-COCOMOII�, PH, 2000, pp34-40.
16. Tom Gilb, “Software Inspection", Addison-Wesley, 2001.
17. Ki-Won Song, "Research about confidence verification of KPA question item through SEI

Maturity Questionnaire's calibration and SPICE Level metathesis modeling", SERA03,
San Francisco, 2003.06

18. Boehm, IEEE Computer, March 2003.
19. Donald J. Reifer, “Making the Software Business Case”, Addison-Wesley, 2002.

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 201 – 213, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Slicing Java™ Programs Using the JPDA and Dynamic
Object Relationship Diagrams with XML

Adam J. Conover and Yeong-Tae Song

Dept. of Computer and Information Sciences,
Towson University, Towson, MD, 21286

adam@adamconover.com, ysong@towson.edu

Abstract. Recent advances in object-oriented technology and computer
networking have changed the way we maintain and develop software systems,
i.e., you may need to maintain the system that is running in remote area. In this
paper, we introduce a dynamic program slicing method applied to Java™
programs using the JPDA [1] (Java Platform Debugger Architecture) facilities.
Our approach produces DORDs (dynamic object relationship diagrams) with
respect to given slicing criterion in XML format, for export and graphical
representations. The resulting slice is collectively called DORD-XML. The
slicing algorithm keeps track of dynamic dependencies of objects so that it can
compute a minimum set of objects with respect to given slicing criterion. By
using DORD-XML and a graph-drawing tool, we attempt to reduce the
complexity of Java programs and to make distributed, remote, and local systems
more maintainable and understandable.

1 Introduction

In recent years, object-oriented software has been the dominant methodology in
software development and maintenance. Most programming languages have already
adopted object-orientation in their semantics or are in a process of adopting it. Object-
orientation has brought us many benefits, such as reusability, maintainability,
information hiding, and so on. While many developers are obsessed with object-
orientation, many are still struggling with the complexity of object-oriented software
systems. This is because object-orientated programs often contain inheritance and
polymorphic hierarchies that may not be obvious by inspection of the objects in
runtime environment. Another reason is that the dynamic behavior of a system usually
precludes total comprehension of the system. Since objects can be created or
destroyed at any time, it often makes programs difficult to understand, especially
when there is dynamic dependency among objects at runtime. There have been
numerous approaches, including Dwyer[2], Chen[3], and Li[4, 9], to analyze and
decompose object-oriented software (especially Java programs) in an attempt to
reduce the complexity to make it more tractable and easier to understand.

Program slicing is a technology that decomposes a program and extracts the
portion of interest with respect to a certain criterion. According to Mark Wiser[5], a
slice is an executable portion of the original program whose behavior is, under the

A.J. Conover and Y.-T. Song 202

same input, indistinguishable from that of the original program on a given variable v
at given point p in the program. Here we extend the definition to an object-level slice
to include object instances, fields, and method signatures instead of actual program
statements.

Our goal is to develop a functional slicing technology and tool-set – based upon
both existing and newly developed theory – to utilize slicing as a utility in the analysis
and debugging of “real-world” applications. Though slicing theory has been explored
in detail by various researchers in the past, very few tools presently exist that provide
the casual software developer tangible benefits of this research. Bandera[6] from the
SAnToS Laboratory (The Laboratory for Specification, Analysis, and Transformation
of Software), is one such tool. Bandera relies upon compiling Java programs to
Jimple code via the Soot Java Optimization Framework[7]. Our technique, however,
attempts to produce meaningful slice results by dynamically monitoring the activities
of an unmodified executing program in near real-time.1

The slicing algorithm we choose to implement here is loosely based upon the
“forward slicing” algorithm described by Song and Huynh[8], which in turn is based
on a technique initially described by B. Korel and S. Yalamanchili[9]. Korel and
Yalamanchili describe forward program slicing as “… a dynamic program slicing
technique. It computes slices as a program executes, unlike any other dynamic slicing
techniques, which require the construction of the dependency graph after execution of
a program to compute slices.”

As a framework for representing program slices, we will be extending DORDs
(Dynamic Object Relationship Diagrams) discussed by [8] to include an alternate
XML representation. Since XML parsers and parser generators have been written for
many modern programming languages/environments, the choice to use XML as a
format for representing DORD graphs allows for significant portability and ease of
both human and machine interpretation. For the sake of our research, we will be
limiting our implementation to the Java programming language.

As a mechanism for dynamic runtime slice extraction in the Java programming
language, we use the JPDA (Java Platform Debugger Architecture) facilities that exist
as a standard feature of the JVM (Java Virtual Machine) distributed by Sun
Microsystems®, Inc. Though specifically designed to facilitate runtime debugging and
profiling, the generality of the architecture lends itself nicely to any kind of runtime
tracing and inspection at the JVM level. Fig. 1 shows the relationship between our
slicer and a target application.

Some benefits of slicing using the JPDA include:

• The availability of source code is not necessarily required to produce a
meaningful and readable slice.2

• No preprocessing of the class files is necessary.
• Dynamic slices can be produced while the target application is actually

executing.

1
 Building the Java application with the debugging symbols switched on greatly enhances the
usefulness of this technique.

2
 Assuming the target class files have not been obfuscated in some way and symbols have not
been stripped.

Slicing Java™ Programs Using the JPDA 203

• Interactive programs can be sliced in near real-time, with only marginal
performance degradation.3

• The program can be sliced remotely over a network connection.
• Slices can be generated against unit tests to aid in modification impact

analysis.

Fig. 1. Relationship between a running application and the slicer

2 A Brief Introduction to the JPDA

The JPDA consists of three layers4:

• JVMDI (Java Virtual Machine Debugger Interface) provides the low-level
system interface to the JVM.

• JDWP (Java Debug Wire Protocol) is the transport-independent protocol for
interfacing a JVM with a front-end application or library.

• JDI (Java Debug Interface) provides the high-level Java API to the JPDA. It is
this last layer that we will use to create our runtime dynamic object slicer.

Essentially, JPDA functions in a client/server event driven model where the target
application executes within a JVMDI-providing virtual machine; such as the reference
JVM provided in Sun's Java Developers Kit. The client “debugger” can communicate
via the JDWP directly, or – more commonly – use the JDI classes that exist as part of
the com.sun.jdi.* library. These classes serve as a wrapper around the lower level
JDWP protocol.

The JPDA messages that we rely upon are the events generated by method
entry/exit and the events generated by variable and field access. With these events, we
can determine which methods are invoked from within an object and which fields are
accessed from each method invocation. Furthermore, we can differentiate between

3
 Any performance degradation will be comparable to execution the application in a typical
Java debugging environment.

4
 J2SE1.4 was used the time of this research. J2SE1.5 introduces a replacement for the JPDA
known as JVMTI (Java Virtual Machine Tool Interface). Future development on the slicer
engine will utilize this new technology as well.

A.J. Conover and Y.-T. Song 204

field accesses that result in modification of the field versus those accesses that are
purely read-only.

Depending on the underlying operating system, the JPDA offers several connector
and transport options for connecting the client (the slicer) to the server (the target
program), ranging from shared memory methods to TCP/IP Socket based
connections. For simplicity and portability, we have chosen the Socket Attaching
Connector method. This allows the program being sliced to start in a suspended
“debugging server” mode within its own JVM, while awaiting the slicer application to
attach via a standard TCP/IP socket. A minor limitation to this approach is that the
target application must be launched manually prior to invoking the slicer. While this
gives us more control for research purposes, we may wish to utilize the Launching
Connector in a production quality tool, which starts the target application in its own
JVM and transparently establishes the communication channel.

Once the slicer (client) is attached to the target application (server), the client can
send the appropriate events to the server to indicate which events the server should
generate. The client may also start, stop, step, pause, or resume program execution.
Our slicer takes as input a <slice_critera>.xml file and generates a
<slice_descrption>.xml file as output. These file formats will be discussed in
more detail below.

2.1 Challenges

One of the greatest challenges in using the JPDA to perform program slicing is the
mapping of JPDA events to specific source statements at specific points of execution.
For example, when looking at the following lines of code, we can plainly see that line
2 is invoking a method in an object and line 3 is assigning that result to a field in
another object.

 ...
1. Calculator c = new Calculator();
2. int x = c.add(2,3);
3. resultObj.sum = x;
 ...

In the JPDA, events are generated at the statement being acted upon, not the

statement performing the action and some events are generated in non-obvious ways.
For example, Looking at line 2 above, the entry and subsequent exit from c.add()
generates a MethodEntryEvent and a MethodExitEvent, respectively. However, the
execution of line 3 will generate a ModificationWatchpointEvent from the sum field in
resultObj, if and only if a watch point was actually set on that field. Though
watch-points are not automatically set, this is easily resolved by utilizing Java’s
reflection mechanism to iterate though all of a class' fields and setting the appropriate
watch-points in response ClassPrepareEvent events.5

Finally, in the current JPDA implementation, individual variables have no
corresponding Modification or Access events associated with them. This precludes the

5 We are using the traditional Java terminology conventions that define a field as a class or object

attribute (object scoped) and a variable as a locally scoped method attribute (method scoped).

Slicing Java™ Programs Using the JPDA 205

ability to do meaningful statement-level slicing from the JPDA alone, as we have no
way of knowing for sure what variables (within a method) are being referenced or
modified at any given time. As a result, we treat each method within an object as a
“black-box” without any consideration of its internal behavior.

The following is a summary of the key limitations to slicing with the JPDA:

• Tracking intra-method variable access is extremely difficult, as no events are
generated for the access or modification of any variable. The only things we
can know for sure about the behavior of any given method pertain to invoked
methods (including object constructors), corresponding return values of
invoked methods, and fields that are read and/or modified.

• Without intra-method (statement) level slicing, we have no guarantees that any
given access or invocation generates a true (minimal) dependency. However,
this is not really a concern if we are only interested in the slice produced by
inter-method analysis, as we implicitly assume that methods are the atomic
units of code execution and are highly cohesive.

• Interfaces and abstract methods pose a special problem in the JPDA, as events
are only generated by the implementing object. However, in the case of a
static initializer in an interface, the interface “object” does generate the
appropriate and expected events.

• Dependencies may be “swallowed” by any excluded and/or system libraries.
Excluding standard libraries is generally necessary to prevent an explosion of
irrelevant information, but a dependency has the potential not to resolve until
the invocation of a library method.

3 Defining a Slicing Criterion

In defining a slicing criterion, we are interested relating the criterion to a feature of
the program. In our current prototype slicer, a criterion can be defined by comparing a
single field to a literal value or algebraic expression; or even by a simple “run to
termination” of a program upon the processing of a unique input stream. In the latter
case, every encountered field will have an associated slice related to the termination
state of the program. Since unique input streams may trigger different execution
paths, a unique set of object states will exist within the application upon termination.
A slice can then be viewed as the union of all slices with respect to all the fields
accessed in execution. This by itself does not really give us a useful slice, since it is
nearly equivalent to a simple trace. However, it does still provide valuable
information about the potential dependencies in a running program.

By definition, a slice must be restricted to the minimum essential states of a system
required to implement a specific feature of the program. Though we may be able to
throw out a lot of “superfluous” code in a simple “run to termination”, the application
will most likely enter many states that are irrelevant to the implementation of a
specific feature of interest. Though a slice is generally computed with respect to a
variable or variables, another useful slice criterion can be defined as the throwing of
an unhanded exception. Since (in most software) we do not consider an unhandled

A.J. Conover and Y.-T. Song 206

exception to be an actual feature, we may wish to compute a slice with respect to the
generation of an exception.

The biggest challenge in establishing a meaningful slicing criterion is the
establishment of a formal relationship between a high-level feature that are interested
in examining and the low level states of the running program. A full exploration of
this formal relationship is beyond the scope of this paper (and will be a topic of future
research). For the sake of example, we have created a very simple two-function
postfix calculator program that is the basis of the subsequent discussion. The
calculator contains several objects that represent functions, operators, operands, the
input stack, intermediate/final results, etc. We can define one feature of the calculator
as the ability to multiply two numbers.

If we wish to isolate a specific multiplication step we could – for example – define
the feature as the ability to multiply 3 * 5 from the input stack of {2, 4, +, 5, 3, *, +}.
Since the calculator knows how to perform two operations (addition and
multiplication), our slice should only reflect the set of objects necessary to perform
the desired multiplication step. With the above input, the result of the multiplication
step is completely independent from the addition steps; therefore, the multiplication
object should not be dependent on the addition object in any way.

For our purposes, a slicing criterion will be represented as an XML file. Shown in
Fig. 2 is a preliminary DTD. As an example, Fig. 3 shows a short XML file (based
upon the DTD) that defines a slice criterion. Though this example is intentionally
very simple, XML provides the flexibility to represent expressions that are far more
complicated.

<?xml version='1.0' encoding='UTF-8'?>

<!ELEMENT match EMPTY>
<!ATTLIST match placeholder CDATA #IMPLIED value CDATA
 #IMPLIED match_type CDATA #IMPLIED>

<!ELEMENT object (match)>
<!ATTLIST object object_name CDATA #IMPLIED>

<!ELEMENT package EMPTY>
<!ATTLIST package name CDATA #IMPLIED>

<!ELEMENT ignore (package)*>

<!ELEMENT slice_criterion (object|ignore)*>
<!ATTLIST slice_criterion version CDATA #IMPLIED>

Fig. 2. Simplified Slice Criterion DTD

Briefly, criterion shown in Fig. 3 states that we are looking for the program slice that
makes the following conditions true:

• An object named (from its corresponding class definition) Multiplier must
exist.

• A field in Calculator.Multiplier named lastResult must equal the
ordinal value of 15.

Slicing Java™ Programs Using the JPDA 207

• All objects from the java.* and com.sun.* trees should be ignored. This limits
the scope of our slicing and prevents the internals of Java libraries from
becoming part of dependency output.

<slice_criterion version="0.1">

 <ignore>
 <package name="java.*"/>
 <package name="com.sun.*"/>
 </ignore>

 <object object_name="Calculator.Multiplier.lastResult">
 <match match_type="literal" value="15"/>
 </object>

</slice_criterion>

Fig. 3. A Simple example of a Single Slice Criterion

The resulting slice should represent the dependency graph necessary to describe a
minimal program capable of matching the above criterion under the same input. In
other words, it should represent the minimal code necessary to multiply two numbers
together that equal 15 under the same input to the application. In this example, the
criterion is obviously very narrow and perhaps only useful in a limited debugging
situation where you need to track the origin of an unexpected value. However, the
DTD does allow much more elaborate criteria to be expressed. For example, the
current incarnation of the slicer supports:

• The match_type attribute may be “literal” for a simple string or literal
match.

• The match_type may be “algebraic” for an expression represented by a
simple logical expression using a placeholder value for the object in question.
For example, X => 15 && X < 20 means match where the field value
represented by placeholder X is greater than or equal to 15 and less than 20.6

• In the future, we will be expanding the criterion definition to include a wider
range of options, such as pre/post conditions, etc.

4 The Slicer

In our slicer, we wish to monitor the objects, fields, and methods necessary to define a
single slice and we attempt to mirror the DORD structure as closely as possible in our
output. To prevent an overload of redundant information in the resulting XML,
objects that appear more than once are referred to by their object ID on subsequent
references. All dependencies from any one object to another are indicated in the
dependency description for each object. The result is a list of all objects, fields and

6
 The algebraic parsing engine currently used is JEP (Java Mathematical Expression Parser) by
Singular Systems: http://www.singularsys.com/jep/.

A.J. Conover and Y.-T. Song 208

methods in the execution that are necessary to satisfy the given slicing criterion.7 To
summarize our slice description goals:

• The XML schema should be as clean and simple as possible. We are not
concerned with “statement-level” slicing, so we only concern ourselves with
tracking and representing dependencies at the object/method level.

• System (platform) libraries should be explicitly excluded from the slice.
Though they are implicitly required for the program to execute, their
decomposition is not generally in the scope of our analysis.

• Dependant objects and methods are fully described only once. Subsequent
references should happen simply by object ID.

• Tracing the dependencies from the initial (entry) object will produce a
dependency graph that maps to an appropriate slice based upon the slicing
criteria.

The data format we propose should be sufficient to create a DORD graph from the

resulting slice description. In addition, we assume that we are restricting our analysis
to a program with a fixed entry point for a given execution instance. (A slice with
respect to a variable is only valid for a single unique entry point.). The DTD is simply
Fig. 1.

<?xml version='1.0' encoding='UTF-8'?>

<!ELEMENT node (node)*>
<!ATTLIST node obj_id CDATA #IMPLIED line CDATA #IMPLIED
 method CDATA #IMPLIED signature CDATA #IMPLIED>

Fig. 4. DTD for slice resulting slice description

The DTD is extremely simple since the most useful information is contained in the
nesting of the nodes. As nodes are nested within each other, all nodes beneath a given
node represent the dependency a tree for that node. Fig. 5 shows a sample XML
document for the slice defined in Fig. 3 based upon our sample calculator.

5 Building Dependency Tree

We treat each method within an object as a “black box” which may invoke other
methods, read from fields, or modify field values. With this in mind a simple
algorithm presents itself, based on several observations and derived rules and
observations:

• The “state” of an object may be (loosely) defined as the union of all field

states.
• A field’s content may change only in response to the execution of a statement

within a method.

7 Given the current limitations of our technique, the slice remains a naïve slice.

Slicing Java™ Programs Using the JPDA 209

1:<node signature="Calculator.Multiplier.lastResult

 method="Calculator.Multiplier.operate(Calculator.SimpleInteger,

 Calculator.SimpleInteger)"

 line="17" obj_id="75">

 2: <node signature="Calculator.Multiplier.operate(Calculator.SimpleInteger,

 Calculator.SimpleInteger”

 method="Calculator.Multiplier.operate(Calculator.SimpleInteger,

 Calculator.SimpleInteger)"

 line="16" obj_id="75">

 3: <node signature="Calculator.Calculator.calculate(Calculator.Operation)"

 method="Calculator.Calculator.calculate(Calculator.Operation)"

 line="20" obj_id="46">

 4: <node signature="Calculator.Calculator.popResult()"

 method="Calculator.Calculator.popResult()"

 line="35" obj_id="46">

 5: <node signature="Calculator.Calculator.stack"

 method="Calculator.Calculator.[init](java.io.PrintStream)" line="6"

 obj_id="46">

 6: <node signature="Calculator.Calculator.[init](java.io.PrintStream)"

 method="Calculator.Calculator.[init](java.io.PrintStream)" line="9"

 obj_id="46">

 7: <node signature="Calculator.Calculator.main(java.lang.String[])"

 method="Calculator.Calculator.main(java.lang.String[])" line="56"

 obj_id="46">

 8: <node signature="Root" method="[n/a]" line="0" obj_id="0"></node>

 9: </node>

10: </node>

11: </node>

12: <node signature="Calculator.Stack.pop()"

 method="Calculator.Stack.pop()" line="20" obj_id="52"></node>

13: <node signature="Calculator.Operation.isOperator()"

 method="Calculator.Operation.isOperator()" line="21"

 obj_id="74">

 </node>

14: </node>

15: </node>

16: <node signature="Calculator.SimpleInteger.value()"

 method="Calculator.SimpleInteger.value()" line="15" obj_id="67">

17: <node signature="Calculator.SimpleInteger.simpleInteger"

 method="Calculator.SimpleInteger.[init](int)" line="8" obj_id="67">

18: <node signature="Calculator.SimpleInteger.[init](int)"

 method="Calculator.SimpleInteger.[init](int)" line="7" obj_id="67">

19: <node signature="Calculator.Calculator.initStack()"

 method="Calculator.Calculator.initStack()" line="48" obj_id="46">

20: <node signature="Calculator.Calculator.stack" obj_id="46" />

21: </node>

22: </node>

23: </node>

24: </node>

25: </node>

26:</node>

Fig. 5. A sample of the XML output for a the given slice. The line 1 is the criterion node. Line
8 is the program entry point, which is also a dependancy.

A.J. Conover and Y.-T. Song 210

O
2
F

1

O2M1

O1M2

O
5
M

1

O
5
F

1

O
5
M

1

O1M4

O1F1

O
1
M

3

O
1
F

1

O
3
M

1

O4F1

O
1
M

0

O1M1

O1.M0 Calculator.[init](java.io.PrintStream)
O1.M1 Calculator.main(java.lang.String[])
O1.M2 Calculador.calculate(Calculator.Operation)
O1.M3 Calculator.popResult()
O1.M4 Calculator.initStack()
O1.F1 Calculator.stack

O2.F1 Multiplier.lastResult
O2.M1 Multiplier.operate(SimpleInteger,SimpleInteger)

O3.M1 Stack.pop()

O4.F1 Operation.isOperator()

O5.M1 SimpleInteger.[init](int)
O5.M1 SimpleInteger.value()
O5.F1 SimpleInteger.simpleInteger

(The lower-right square is the program entry point)

Fig. 6. Graphical representation of the slice XML Fig. 5

Fig. 7. DORD representation of the graphical hierarchy shown in Fig. 6

• Only one method (per thread) is executing at any given time.
• When a method alters the value of a field, the dependency graph of the field

node becomes equal to the dependency graph of the setting method node.
• When a method reads a value from a field, the dependency graph of the

method node becomes the union of the method’s existing dependency graph
and that of the field.

: lastResult
(Multiplier)

(SimpleInteger)

isOperator()
pop()

(Stack)(Operation)

(Calculator)

value() operate(SimpleInteger,SimpleInteger)

5 O
1

O

2
O

3
O

4
O

Slicing Java™ Programs Using the JPDA 211

• When a (caller) method invokes another (callee) method with parameters, the
invoked method inherits the active dependencies of the invoker.

• When a (callee) method returns a value to a (caller) method, the dependency
graph of the caller method becomes the union of the method’s existing
dependency graph and that of the callee method.

Formalized Rules:
On.Mm Oi.Mj :: Dep{Oi.Mj} = Dep{On.Mm} ∪ On.Mm

On.Mm ⇐ Oi.Mj :: Dep{On.Mm} ∪= Dep{Oi.Mj} ∪ Oi.Mj

On.Mm Oi.Fj :: Dep{Oi.Fj} = Dep{On.Mm} ∪ On.Mm

On.Mm ⇐ Oi.Fj :: Dep{On.Mm} ∪= Dep{Oi.Fj} ∪ Oi.Fj

Where:
On.Mm Method(m) in Object(n)

On.Fm Field(m) in Object(n)

On.Mm ⇐ Ox.Fy Method(m) in Object(n) reads a value from Field(y)
in Object(x)

On.Mm Ox.Fy Method(m) in Object(n) sets value in Field(y) in
Object(x)

On.Mm Ox.My Method(m) in Object(n) invokes Method(y) in
Object(x) with parameters

On.Mm ⇐ Ox.My Method(m) in Object(n) receives a return value from
Method(y) in Object(x)

Dep{On.Mm} The set of dependencies under On.Mm

∪= "Union Equals" assignment operator. Concatenates
the left value with the right value and stores new left
value.

As the program executes, the JPDA produces method-entry, method-exit, field-

access, and field-modification events as the slicer grows a dependency graph for each
node, until the given slice criterion is satisfied. Method invocations are tracked as
objects on an invocation stack with all potential dependencies. All fields and related
dependency graphs are stored in an association map as new fields are encountered.
When a field’s value is set or modified by a method, the current dependency tree is
“attached” to the field overwriting any previous tree. This can be done since the
setting method will have already inherited the necessary dependencies prior to
modifying a field. At the end of execution, every visited field in the active block set
exists in a map (providing the corresponding slices for each of those fields). “State
explosion” is minimized by the fact that field dependency trees only ever exist with
respect to the active block set and method dependency trees (by virtue of being stored
on a call stack) only exist while the method is part of an active block.

A.J. Conover and Y.-T. Song 212

Since each method is essentially being treated as a “black box” (i.e., we do not
know how locally scoped variables are being modified or accessed), it must be
assumed that any dependencies of a method becomes a potential dependencies of any
field that is modified by the method. It also must be assumed that an active method
potentially inherits all dependencies of any field that it reads. The same logic applies
to method invocations containing formal parameters and subsequent return values. If
parameters are passed to a method during a method invocation, the invoked method
must inherit all potential dependencies from the invoking method. Likewise, if an
invoked method returns a value to an invoking method, the invoking method must
inherit the dependencies of the invoked method. Conversely, if no parameters are
passed or values returned in a method invocation, then the dependency graphs of the
respective methods do not directly affect each other. This technique effectively grows
a dependency graph while the target application is executing, providing a valid slice
for any field of interest at any given time.

6 Conclusions

We have examined the feasibility of using the Java Platform Debugger Architecture
as a tool to perform object, method, and field level slicing dynamically on an
executing Java application. While the JPDA does not provide – by itself – enough
information about the internal workings of a running application to perform
statement-level slicing, it does provide enough information to produce a useful slice
with respect to a given field in an object. Though the resulting slice is inherently a
naïve slice, it may still provide enough valuable information about the dynamic
potential dependencies of an application to ease the debugging or refactoring of a
large application. The limitations of this technique may be offset by the fact that very
little preparation is needed by the target application. Invoking the target application
with the appropriate JVM switches is often sufficient. The production of a platform
neutral slice description in the form of an XML document will allow other tools, such
as graph drawers or debuggers, to more easily make use of the data. Finally, a simple
dynamic algorithm for maintaining potential dependency trees for each visited field in
a running application was proposed.

7 Future Works

As the current slice descriptions are formatted as XML documents, they are easy for
machines to understand, but rather difficult for humans to comprehend at a glance.
Several “off-the-shelf” tools already exist to cleanly display graphs generated via
formal API. One such tool is Jgraph (http://www.jgraph.com/). JGraph is a powerful
open-source graphing tool licensed under the GNU Lesser General Public License8.
The next logical step in DORD-XML visualization is the creation of a parser to
process the resulting XML files for input into such a visualization tool. As of this
writing, a prototype of a JGraph based visualizer is in progress. A more distant goal is
to create an IDE plug-in application that will allow bi-directional consistency

8
 For a full description of the GPL/LGPL see: http://www.gnu.org/licenses/licenses.html.

Slicing Java™ Programs Using the JPDA 213

mapping from a high level ADL to low level source code in such a way as to establish
that a given implemented feature reflects the actual architecture and functionality
specified by the high-level requirements.

References

[1] Java Platform Debugger Architecture (JDPA), http://java.sun.com/products/jpda
[2] M. Dwyer, J. Corbett, J. Hatcliff, S. Sokolowski, and H. Zheng. Slicing multithreaded java

programs : A case study. Technical Report 99-7, Kansas State University, Department of
Computing and Information Sciences, March 1999.

[3] Z. Chen and B. Xu. Slicing Object-Oriented Java Programs. ACM SIGPLAN Notices, 2001,
36(4), 33-40

[4] Bixin Li, Analyzing information-flow in Java program based on slicing technique. ACM
SIGSOFT Software Engineering Notes, September 2002, 27 (5).

[5] Mark Weiser (July 1982) Program slicing. IEEE Trans. on Software Engineering, SE-
10(4) 352-357

[6] Bandera, http://bandera.projects.cis.ksu.edu
[7] Soot: a Java Optimization Framework, http://www.sable.mcgill.ca/soot/
[8] Y. Song and D. Huynh, Dynamic Slicing Object-Oriented Programs using Dynamic Object

Relationship Diagrams. The Journal of Computer and Information Science, 2 (1)
[9] B. Korel and S. Yalamanchili, Forward Computation of Dynamic Program Slices.

International Symposium on Software Testing and Analysis (ISSTA). August 1994

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 214 – 228, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Infrastructures for Information Technology Systems:
Perspectives on Their Evolution and Impact

C.V. Ramamoorthy1 and Remzi Seker2

1 Department of Electrical Engineering and Computer Sciences,
University of California Berkeley, Berkeley, CA 96720, USA

ram@cs.berkeley.edu
2 Computer Science Department,

University of Arkansas at Little Rock, Little Rock, AR 72204, USA
rxseker@ualr.edu

Abstract. This paper attempts to clarify infrastructure’s definition and its im-
pact and reach. Despite the wide use of the term and the importance of the enti-
ties it represents, the notion of infrastructures has not been thoroughly ad-
dressed. We use different perspectives for defining infrastructures and investi-
gate the intricate relationships a system has with its infrastructure. In order to
deal with the complexity of the infrastructure notion, we provide a diverse set
of classifications. We focus on the information technology infrastructure and its
security and survivability. We investigate the design issues for building evolv-
able, resilient, disaster-hardened infrastructures.

1 Introduction

For any given system, the presence of an underlying infrastructure (I/S) is a necessary
condition. According to Warren Buffet, a well-known stock market personality, an I/S
is like oxygen. When it is there, we take its services for granted and do not even think
about it. When absent, we will not survive. In the same way, when any essential ser-
vice incurs a disruption due to a failure in the I/S, we feel its drastic effects in our
daily activities. In Latin, the notion of I/S is “Sine qua non” (without which nothing
exists); the I/S is an absolute necessity for any system to function.

An I/S is the set of basic underlying foundations, features, functions and resources
that provide facilities on which the continuance and growth of a system, state, or
community depends. We associate public I/Ss to include transportation systems,
power grids (including power plants), clean air and water, communication systems
supported by Information Technology (IT) etc. We generalize the notion of I/S to
include essential processes, functions, systems, products, and services necessary to
fulfill the system’s intended mission by performing and sustaining specified activities
at the desired levels.

Although the numerous definitions for I/S notion slightly vary in their comprehen-
siveness, all of them eventually emphasize that a system’s I/S is the most vital ele-
ment; without an I/S a system can neither function nor support its long-term
existence. Despite its importance, the term I/S has been vaguely used to mean

 Infrastructures for Information Technology Systems 215

different things in different contexts. Our aim is to clarify the I/S definition and its
implications.

The motivation for this paper to focus on the I/S notion is as follows; commonly
used systems, especially those like the power grid, weapon systems, and the I/S asso-
ciated with IT systems are very expensive to build and they remain in commission for
a long time. As an example, the B-2 bombers designed and deployed during World
War II continue to remain in service today, and are projected to remain in operational
service for the next fifty years. Regular maintenance on these I/Ss is needed in order
to assure their correct functioning. We expand and extend current systems without
consequent upgrading of their I/S’s due to practical issues such as cost. The I/Ss pro-
vide essential public services, they stay around for a long time, and the society be-
comes dependent on them. These I/Ss have become increasingly vulnerable in our
society and face continuously increasing service demands as well as unexpected
threats. To summarize, we can say that an I/S is always associated with a specified
system which has a purpose, functionality, and mission, operating predictably under
specified constraints including environments and threats, during its lifecycle. Systems
and services must be designed with due consideration of their required I/S in mind.
The I/S also constitutes the life support system of the entity being designed. To put it
strongly, we should co-design the system and its infrastructure. In many instances,
parts of the necessary infrastructures may already be available.

This paper is concerned primarily with I/S issues of IT based systems. We shall
consider some systems and engineering design perspectives. We shall discuss the
current status of the I/S’s based on our experience and summarize some salient prob-
lems and issues. We benefited from the pioneering presentation of our friend, Prof
Herbert Weber, of the Technical University of Berlin in the International Conference
on Integrated Design and Process Sciences, 1998, but regrettably we did not come
across any comprehensive studies subsequently on this topic. We consider some
future trends for I/S based on some potential advances in the software and the IT
(including communications) as well as the perceived evolutions in consumer needs.

2 Fundamental Attributes of I/S Notion

The Webster’s New World Dictionary defines an infrastructure as “the basic installa-
tions and functions on which the continuance and growth of a system, service, and
state depends.” Clearly, the definition implies that the infrastructure of any system
includes the set of essential functions, activities, and services, which support the sys-
tems operations, current health, and future growth. An infrastructure is necessarily
associated with a specific system, namely, with the system’s purpose, functionality,
and mission, while it is operating predictably during its life cycle under specified
constraints, including the environment, known failure modes, and threats.

The importance of an infrastructure cannot be overstressed. It constitutes the foun-
dation, generally the root of a massive tree and often the key stems and branches. Its
strength, inherent in its design, will not only protect the derived systems from disas-
ters but ensure sustainability, adaptability, growth, and evolution.

We slim down the I/S notion into three parts, based on the entity’s lifecycle:

216 C.V. Ramamoorthy and R. Seker

1. The I/S needed for the entity’s creation, development, and implementation: when
we have an idea that can be manifested as a new entity, we need appropriate tools,
knowledge, man-power, and other resources to realize the idea, i.e., design, devel-
opment and implementation of an artifact. These elements represent a part of the
entity’s infrastructure.

2. The I/S needed for the entity’s operation and maintenance. A system cannot be
expected to operate flawlessly under all conditions except those for which it was
designed. The services and resources needed for these activities are another part of
its I/S. The components under this category include the hardware, operating sys-
tems, etc. Fault corrections, performance improvements, etc. all require modifica-
tions of the existing system. These activities require support tools, knowledge
about the system, its documentation, etc., to allow us make the desired changes.

3. The I/S needed to support system re-engineering for upgrading, platform migra-
tions, adaptations due to technology advances, and evolution. These generally in-
clude the addition of new functionalities.

All three parts of the I/S we have stated above would ideally be there for a specific
entity, operating under specified environments and failure modes which may include
safety and security aspects. In summary, I/S consists of essential resources in the form
of functions, activities, services, and systems needed for an entity’s creation, devel-
opment, and implementation, its operation and maintenance at an expected level, and
its sustenance, evolution, and growth.

We classify, from the perspective of human life, I/S into two categories, namely,
primary I/S and secondary I/S.

1. Primary I/S: this part of the I/S is the most basic, fundamental and essential. Air,
water, food, shelter, etc. are most basic necessities and these are part of the primary
I/S.

2. Secondary I/S: this is essential to the entity once the primary I/S elements are in
place. Examples of secondary I/S are electric power, transportation, communica-
tions, computers, etc. The infrastructures required for proper operation of the IT
entities belong to the secondary category under the implicit assumption that there
exists the primary I/S in the background. In other words, electric power and trans-
portation will not make any sense if there is no clean air and water for the people
who will use them. In the subsequent discussions we will be only dealing with the
secondary I/S structures which are IT-specific.

3 I/Ss for IT Systems

We shall now focus our attention on the IT I/S. We can model these I/S structures as
consisting of some common base with several levels (layers) or tiers constructed
around it, as shown in Fig. 1. The common base of the I/S can be visualized as the
foundation of a building (the core elements of I/S) supporting other I/S elements lay-
ered above it.

An I/S can be considered like the roots and stem of a tree. Just like a good house is
always built on a solid foundation, sound I/S is necessary for a system’s (or service,
function, or product’s) sustainability, adaptability, growth, and evolution. The

 Infrastructures for Information Technology Systems 217

importance of I/S emphasizes the requirement that it must be protected from and dur-
ing the disasters, as disruptions in I/S-based services can inflict severe damage on the
society.

We shall examine the IT- I/S notions from the systems and engineering design
viewpoints. The systems viewpoint includes considerations of the tools and utilities,
operating systems, computer and communication systems, database management
systems, and application systems. Engineering design viewpoint considers I/S as an
entity that is being gradually developed, through the integration of independently
developed subsystems around a common base. The primary I/S of an IT system tends
to be rigid, expensive and often too difficult to change. Since the I/S helps in the crea-
tion, nurturing and evolution of the entities under its auspices, it has to be properly
created, designed and grown. This then implies the system designer has to keep in
mind the infrastructure needs of the products over their lifetime and help in the con-
figuring a suitable I/S design to meet the perceived needs.

Fig. 1. I/S levels built upon the common base I/S. There can be different elements at each level.

3.1 Examples of I/S

We will provide some examples for the I/S elements within the context of IT. They can
range from very abstract concepts, theories, design rules, hardware and software enti-
ties. Based on the definitions provided earlier, an I/S element can be an abstraction, a
software process, a hardware artifact or an entity that manifests all of these. It has to be
essential to the creation, operation, maintenance, and evolution of the system.

In a typical processor configuration the I/O unit, the memory sub-system, the regis-
ter files, the arithmetic logic unit, execution unit, control and display hardware are
essential for proper operation. These can be considered as parts of the total system
infrastructure. In a communication system, the standards, protocols, etc., that provide
rules to specify services are also elements of the IT system’s infrastructure. In the
programming language domain, the rules of syntax used in the production systems
provide analyzability and the semantics of their vocabulary provide the expressive

218 C.V. Ramamoorthy and R. Seker

power of the language. These too are rules that govern programming languages. The
Boehm-Jacopini conditions which establish the operational completeness require-
ments for programming languages can be considered as part of their I/S. Similarly the
essential and necessary control functions that manage the computer systems are also
parts of that operating system’s I/S.

Tools like formal methods can help showing that the system’s design satisfies the
necessary and sufficient conditions for the desired operation. Software system devel-
opment, an important part of the IT I/S, depends on languages, compilers, execution
environment and operating systems, design and development tools (including the
utilized process), communication environment (including the Internet), and also on
the quality of engineers and designers.

Biological systems possess complex I/Ss as required for their maintenance. For ex-
ample, a human hip joint is a single ball and socket structure, which uses cartilage
dependent on glands and the blood supply. However, in order to keep the joint alive,
the body has a complicated “factory” (I/S), which produces and purifies blood and
maintains glands.

Our last example is from the oil industry and it shows the critical importance of the
I/S notion. ‘The US Energy Information Administration estimates that both petroleum
production and consumption will raise by 2% a year from 2001 to 2025, arriving at
123M barrels a day by 2025. This steady increase will require an exponential growth
in global infrastructure, capital, and personnel addition to the continuing productivity
gains that should be achieved by technologically intensive oil industry” [1]. The im-
portant point in this example is that providing 2% increase in oil production requires
an exponential increase in costs to create the additional infrastructure.

3.2 Functions of I/S

An entity’s I/S consists of essential resources, services, and functions to fulfill the
following objectives.

− To help create, develop, and implement the entity specified by functionality and
performance requirements,

− To assure its operation at a desired level and support its maintenance, and
− To help the entity’s evolution, sustainability, and survivability.

The above objectives are meant to support the entity’s intended purposes (applica-
tion needs) and its mission. These objectives are to be satisfied by the entity under
specified conditions of operating environment, including failures resulting from spe-
cific threats.

3.3 The Immense Scope, Impact, and Reach of I/S

I/S breakdowns can create disasters. For example, a telecommunication satellite
(PanAmSat’s Galaxy 4) failed in May 1998 due to a solar storm and this failure dis-
abled 90% of the pagers across US, crippled ATMs, some communication networks,
and credit card systems worldwide. In addition, this failure also disabled airline-
tracking services and created a 26-hour black hole effect, which stopped the air traffic
between east and west coast of US for a few hours. Other examples for I/S failures,

 Infrastructures for Information Technology Systems 219

include the collapse of the Internet in 1997, when the Domain Name System failed
due to operator error; the US-wide collapse of AT&T’s frame relay network on April
13, 1998, due to faulty software upgrade, etc. For more examples, we refer the reader
to Reference [2].

I/S has direct implications on designing and implementing new products. The fol-
lowing quote from Hewlett-Packard’s (HP) CEO Carly Fiorina supports our point:
“HP’s collaborative approach is tailored to a customer’s ecosystem to create adaptive
infrastructures that use leading software products and architectures and leverage HP’s
own expertise in the creation of adaptive infrastructures” [3].

Infrastructures must evolve with the technological advances as well as the people’s
love for product variety. These are implied in the empirical observations as portrayed
in Grove’s multiplier effect [4] (after you use one product you buy many more prod-
ucts of the same technology family, e.g., PC’s and handhelds) and Ross Ashby’s ris-
ing tide effect (from his law on requisite variety) which emphasizes that the rising tide
of knowledge and technology lifts (increases) our need for higher quality and more
variety in products we use [5].

4 Classification of I/S

Classification helps structuring and organizing our knowledge. It also helps discover-
ing subtle relationships on the matter for which the classification is being made.
Therefore, in order to gain a better understanding of I/S concept, we will look at I/S
classifications.

4.1 Structural: Levels/Layers and Rings (L/L&R)

The objectives of using levels/layers and rings are (a) to decompose the system into
segments in form of levels/layers and rings, (b) understanding the system to make it
easy to maintain, change, restructure, and enhance, and (c) to reduce “complexity” in
representation and understanding. The layers/levels can be perceived as ways of verti-
cally structuring while rings can be perceived as horizontally structuring the system.
However, in the way that we represent them they can be equivalent.

A level is defined as an attribute or a position in a graded scale of values. For ex-
ample, one thinks of levels of abstractions in a hierarchy. A layer is defined as ar-
rangements of “material” laid out or spread over a surface, e.g. in a layered system,
lower layer supports (services) the next higher layer. In practice, levels and layers are
used interchangeably, unless instructed otherwise. The key point is that each layer
supplies and supports the services needed by the layer just above it, e.g., the Open
Systems Interconnection (OSI) protocol suite specifications.

There can be several layers of I/S. Some are essential for the products function;
these are the primary I/S elements (e.g. air, food, and water being the primary I/S
elements for existence of human life). Others depends on the primary I/S and they
constitute the secondary I/S. Usually, for practical purposes, the primary I/S is as-
sumed to exist and be pervasive; it is available anytime, anywhere. As indicated be-
fore, we will be concerned with the secondary I/Ss. These secondary I/Ss are usually
associated with the IT aspects of systems (i.e., IT-specific components/systems).

220 C.V. Ramamoorthy and R. Seker

There could be a layered hierarchy among the secondary I/S, as seen in Fig. 2. IT-I/S
is the secondary I/S from a system point of view and includes the essential computer
and communication-oriented functions encompassing hardware, software, operating
systems, and supporting databases. It would include application specific essentials
such as the interface systems, the front end, parts of middleware and specialized ap-
plication services within the back end. These involve hardware, software, communi-
cations, etc. (Each layer, even within the secondary level can have a layered structure.
This fact is depicted in Fig. 2.) The primary I/S, which includes physical services
such as power, communication connectivity, etc. will be the bottom (lowermost) layer
and its presence and availability is implicitly assumed. The primary I/S supports the
secondary I/S.

Fig. 2. A coarse layered representation of I/S with IT I/S in perspective

Vertical structuring (levels/layers) allows implementing functions at one level by
using the functions at the level immediately below it (e.g., micro-operations, micro-
programs, machine language instructions, etc.). In other words, the lower levels sup-
port the functions of the higher levels. Isolation between levels can be used to imple-
ment safeguards that could be necessary in some I/Ss.

Fig. 3. Ring structured I/S

 Infrastructures for Information Technology Systems 221

Horizontal structuring is based on the use of rings. The main idea of the horizontal
(ring) structure is that the outer rings support or protect the functions of the inner
rings. Some of the examples are security and protection rings, and firewalls. Histori-
cally, protection rings protected medieval castles using moats with moat-monsters,
archers, hot-oil, and high castle walls. Fig. 3 shows a simple ring structure.

An egg could be given as an example of a ring structured biological entity. The
embryo in an egg carries the minimum, essential function. The egg white provides the
resources and serves as a “cushion” for the embryo. The membrane around the egg
white also provides an additional protective cushion. The eggshell is the stronger
wall, which protects the egg, and is the third layer. The I/S of an egg then provides
protection against shocks and vibrations, and against intrusion. The I/S for an egg
protects the embryo, and the layers provide the protection: if any of the I/S levels
malfunctions, the egg will fail its mission.

The ideas used in rings and layers/levels are very similar. The implementations
may be different. The main difference is that ring structure can picture levels of pro-
tection in addition to the representations achieved by layers/levels. In a ring structured
I/S, if the core (primary I/S) fails, the whole system fails. Moreover, each ring can be
partitioned into essential and nonessential functions thereby result in additional rings
(e.g. rings that collectively form a ring, just like it is in the case of levels/layers). Fig.
4 shows rings and layer/level representations side by side.

In the usual security type of ring structure, an outer ring doesn’t service/support the
functions of the next inner ring, but provides security and protection, which is essen-
tial for proper operation of the next inner ring. In the traditional layered structures
(e.g. OSI protocol scheme), the lower layers provide service/support to the functions
of the next upper layer. Fig. 5 shows the correspondence between the layered/leveled
and ring structures when a relationship like security and protection is of interest.

Fig. 4. Ring structured and leveled/layered I/S

222 C.V. Ramamoorthy and R. Seker

Fig. 5. Correspondence between layered/leveled and ring structured I/S

4.2 Spatial: Internal, External, and Combination

Parts of the components that make up a system’s I/S may be contained within the
system (internal I/S) and others could be outside the system (external I/S). For exam-
ple, if we think of a personal computer, the internal I/S would be processor and its
accessories. The necessary power for the computer, or the network connectivity
through which the computer can communicate with other computers would be exter-
nal I/S. In general, the overall I/S would contain both internal and external elements.

4.3 IT I/S Types

We classify the IT I/S into four categories: static (hardcore), dynamic, virtual, and
adaptive. We caution that these categories may have overlapping features. The case of
having an overlap becomes particularly common for adaptive and virtual I/Ss. Our
classification is based on current engineering terminology and its implications. We
will use the term static I/S and hardcore interchangeably.

The hardcore is an essential component of I/S. The dictionary defines hardcore as a
dedicated completely faithful nucleus of a group or movement. It performs the ‘mini-
mum’ essential functions of a system. It is also the part of the system that may be hard
to change. This is not to say that hardcore never changes but rather the changes made
to the hardcore are much slower and less often than other, non-hardcore, elements. I/S
is built on (designed around) hardcore; I/S includes hardcore. The hardcore can in-
clude CPU, memory, bus, execution unit, etc. In the hardware (microprocessor)
world, hardcore can be a subsystem that also contains a hardwired or a micro-
programmed procedure for performing minimum essential functions. One such func-
tion makes the microprocessor to tests itself and if certain conditions are satisfied, it
initiates tests layer by layer until the total processor system is tested. By this, the
hardcore establishes the operational readiness of the system.

Dynamic I/S functions are those I/S activities that are dynamically selectable, re-
locatable and executable on parts of the system that may include the hard core. Hence,
the dynamic I/S functions support and serve the system along with the static I/S. The
static I/S only serves the dynamic I/S by providing the fundamental services.

Virtual I/S is the realistic, software directed simulation of the required I/S func-
tions, resources, and environment. These simulations provide services provided by
certain I/S functions. These may include functions served by the internal and external

 Infrastructures for Information Technology Systems 223

I/Ss. We generally use the virtual I/Ss for short durations. They are used as “spare
tires” and not for use for extremely long time durations because of power and per-
formance issues. The important concept here is that the virtual I/S function serves as a
substitute or replacement of another I/S function. When certain I/S functions fail the
virtual I/S concept may come as a rescue. The virtual I/S concept may find many
applications in grid and cluster computing and is a fruitful research area.

Adaptive I/Ss are configured by assembling functions and resources from the exist-
ing I/S (fixed), plus those which are dynamically assigned (variable) and/or virtually
created. Adaptive I/S are provided to satisfy changing or evolving environments.
Because of its flexibility, an adaptive I/S can support changes due to different system
configurations, platforms, and applications. This can help to provide orderly evolu-
tionary transitions due to product updates, upgrades, enhancements etc. Adaptivity in
I/S requires careful design considerations on the I/S. Adaptive I/S resources are gen-
erally supported/provided by application service providers.

The techniques used to achieve adaptive I/Ss are similar to program relocation, in-
direct addressing, etc. Adaptive I/Ss can be created and formed so that the system’s
functions can dynamically be relocate-able, reconfigurable, substitutable, and en-
hance-able. This concept is reminiscent of concept of ‘dynamic binding’ used in com-
puter science and software engineering.

We will cite two examples for adaptive I/Ss. Walt Disney Los Angeles Concert
Hall is built such that it has a fixed and a variable I/S from an acoustic point of view.
In order to produce the necessary acoustic requirements for a specific performance,
movable beams and fixtures (variable I/S) within the concert hall are rearranged with
the built-in acoustic environment (fixed I/S). Our second example is from the Avery
Fisher Hall in New York. The adaptive acoustic I/S is created by rearranging the
players, musicians, and the movable panels (variable I/S) along with the fixed acous-
tic environment of the hall (fixed I/S) to meet the needs of a particular concert.

IT I/S differs from other I/Ss in the sense that it can include a high number of vir-
tual higher layers (including some elements in these higher layers) and can be adap-
tive. The adaptivity of IT I/S can be achieved through the dynamic I/S concepts. In-
clusion of virtual I/S concepts can further increase the adaptivity of IT I/S.

4.3.1 Adaptive I/S for Computer Security
In order to motivate the applicability of the I/S notion for computer security, we will
look at the I/S analogy in medicine. Medical I/S is about education, awareness, pre-
caution and prevention, detection of diseases and infections, slowing down the pro-
gress of diseases, and finally disease elimination. The objectives of a patient include
surviving as long as possible, enduring less pain, less hospitalization and expenses,
and personalized therapy. The objectives of a medical doctor include patient’s sur-
vival, determining the cure rate of the therapies, and obtaining new insights in pre-
venting and curing diseases. This analogy can be applied to computer security. By
using security measures we can slow down the spread of computer viruses, which
corresponds, in the medical field, to the improving the chances of survival of the
patients by slowing down the progress of the disease (e.g. strengthening the immune
system).

Our approach of applying medical analogy in dealing with computer viruses or in-
trusions is different than the existing immune system analogy [6, 7] in dealing with

224 C.V. Ramamoorthy and R. Seker

computer viruses, worms, and intrusions. For the sake of simplicity, we shall use the
term virus to include the worms, Trojan horses, etc. Most of the existing approaches
recognize viruses based on samples of the instructions contained in them. Although
this seems to be a good approach, such a defense mechanism can deal only with
known viruses which have been studied and whose identities or signatures are avail-
able in the anti-virus programs’ databases. When a new virus is out, such a detection
mechanism will fail. Human communities living in isolation helped humans survive
many deadly diseases. To date, isolating deadly diseases remains to be one of the
basic steps in dealing with such epidemics. The connectivity created by the Internet
can spread of viruses to all computers and networks connected to it, limited only by
the available access and bandwidth capacity.

Security issues have become more complex to address due to existence of diverse
set of machines (although, diversity has its advantages for immunity). The security
problems become complex when we deal with mobile systems that often function
outside the company’s firewalls, and peer-to-peer systems from independent social
organizations, and when users demand more functionality which may be directly
opposed to security (e.g. VB macros for MS WordTM documents), etc.

Some of the issues related to computer security include lack of rapid immunity
support, slowness in detecting the infection or intrusion, the long delay in removing
the virus and repairing the damage. Security activities can be time consuming because
of the need for human interaction and support (while the virus keeps spreading!).
Although the threats are generally known and the prevention methods are known, the
appropriate response and remedy remain unknown. An adaptive resilient I/S should
lessen the vulnerabilities and mitigate the effects of the attacks until human response
is mounted.

The I/S approach to dealing with computer security departs from usual security en-
gineering methods. Our idea is to construct the I/S such that it hampers or disrupts all
attacks. Slowing an attack is simpler than stopping it. Taking this perspective, I/S can
act like an immune system. Our approach of dealing with viruses and intrusions is a
two-step process:

1. Automatic computer responses to detect and slow down the attacks (similar to
human immune system). This functionality is performed by the system’s I/S and
constitutes fast response.

2. Human response to stop the attacks; similar to human nervous system and the
brain. Human operator with automated intelligent support analyzes, isolates, and
stops the intruders (slow follow-on).

In our approach, the I/S reduces the burden of prevention. The damage is reduced by
the I/S itself. This approach is good for controlling fast spreading viruses, denial of
service attacks etc. Such an I/S can complement and support the current security
mechanisms.

An adaptive I/S focuses on two main points for security. Virus throttling and a re-
sponsive intrusion detection system. Virus throttling slows the speed of virus propa-
gation before a signature for the virus is available. It can be achieved by analyzing the
performance of machines. In this case, an abnormal slow down may mean a virus
attack is in progress. It involves removing/isolating the infected machine, placing it
under quarantine. Furthermore, the existing methods for address space randomization

 Infrastructures for Information Technology Systems 225

slow down the attacks [8] and are included among the virus throttling measures. As a
result of virus throttling, the infection can be slowed down and contained. Meanwhile,
a responsive intrusion detection system detects any abnormal system behavior and
identifies a virus using a signature [7] table and helps the operator to remove the vi-
rus. A good research area is to develop methods that can make the system’s IT I/S act
as a virus immune system, actively detecting, slowing the spread of an infection and
progress of an intrusion and providing valuable information to the central security
system to help remove and repair the threat and remedy damage.

5 I/S Change and Evolution

I/Ss are expensive to build and maintain. Changes to I/S are due to technological
advances, changes in human needs, and the evolution in products, systems, and ser-
vices. Re-engineering costs can go up to three times the cost of original product de-
velopment and approximately 4-% of the cost is due to I/S standards, protocols, plat-
forms, ease of use, etc. Updating and upgrading legacy systems mostly revolve
around upgrading of I/S elements in order to be compatible with new standards and
protocols. Changes may be needed (a) in the I/S systems (e.g. to fit a new product),
for example, upgrading a personal computer to run a new application; or (b) in the
products (e.g. to be compatible with the existing I/S) such as the 110-220 voltage
selection for some appliances; or (c) in both the product and its I/S to incorporate the
new standards (e.g. BlueTooth, IEEE.801x, etc.).

I/S change and evolution requires tools and education. The education is to be carried
out at three levels; user level, community level, and developer level. The evolution of
I/S suggests that it functions as the system’s foundation (creation and growth) and back-
bone (evolutionary structure) but also as the system’s immune system (protection, secu-
rity, and well-being). To put it simply, I/S design will require a vast amount of pre-
planning. We, as a community, have yet to develop design awareness and design princi-
ples to develop long lasting adaptive infrastructures for our IT products.

Fig. 6. Product evolution and implicit requirements

226 C.V. Ramamoorthy and R. Seker

Grid computing links numerous computers, storage systems, and communication
networks and creates a pool of computing power that can be accessed by different
tasks and users rather than rigidly configured for a specific application (e.g., cluster
computing). Grid computing can make I/S more available, accessible, automatable,
and flexible. The major impact of grid computing in I/S will be to provide virtual
resources and support. The virtual I/S can support strategies for fault-tolerance, per-
formance improvement, etc. Unfortunately, grid computing needs standards to facili-
tate interoperability, for deploying commercial applications as well as well designed
fortifications against malicious security attacks.

I/S evolution may follow the flight path of products, systems, and services. A usual
product trajectory, together with its implicit requirements is seen in Fig. 6. The ex-
tended view of the product evolution is shown in Fig. 7. The industry and government
standards personify a product’s built-in I/S after it becomes a commodity.

The doubling of knowledge every three to seven years and semiconductor chip per-
formance doubling every 18 months (while its price remains the same) are exponen-
tial growths. Ross Ashby’s rising tide effect about consumer needs and demands for
high quality products may also have an exponential growth. The question we would
like to ask is that whether I/S evolution may follow a similar flight path; in other
words, whether I/S evolution may be an exponential one.

Commoditization of I/S elements impacts industry standards, government stan-
dards and constraints, and intellectual property issues. I/S technology usually starts
with a proprietary product, system, or service and slowly evolves into being a com-
modity. When it is a commodity, it is subjected to stringent industry and government
standards, as seen in Fig. 7. IT products, services and functions particularly those
related to software have become commodity items. What effects this commoditization
can have on IT I/S design and evolution remains to be seen.

Fig. 7. Extended view of the product evolution and implicit requirements

 Infrastructures for Information Technology Systems 227

6 Discussion, Concluding Remarks, and Future Research

We revisit I/S definition for the last time: I/S represents minimum essential resources
and assets to create, design, implement, operate, sustain, and evolve activities and
functions under specified environments and threats, in predictable ways. These in-
clude essential resources needed to restore essential services after abnormal events.

In summary, I/S definition is conceptually easy but vague, difficult to narrow
down, and it is subjective to the intended application (user) and the environment. It is
important that every system designer considers the I/S requirements at the same time
as he/she considers its design. The I/S should be identified soon after the system is
specified or given an I/S, the system’s functional specifications will be dependent on
it. In this respect, I/S can be thought of as the platform or the environment. Good I/Ss
should be based on application/user needs, product-user-environment threat loop, and
in general, on the system’s eco-system.

Generally each system, product and service needs specialized I/S: the primary
(general purpose) and the secondary (specialized). Some of the concerns are availabil-
ity, security, pollution, etc. As an analogy one can consider Lubbock, Texas tap water.
It is cheap, you trust in its purity, but you still prefer drinking bottled water.

Development environments (one can consider them as the ‘I/S of the I/S’) can be
roughly classified as proprietary (cathedral, closed) and open (bazaar) environments
[9]. In the proprietary environments, intellectual property issues slow down the com-
moditization while in open environments commoditization is rapid. To give an exam-
ple, Prof. Gordon Bell observed that the reason why the computer (PC) became a
commodity is that Univac did not get the computer patent, but Iowa State University,
a nonprofit organization, received it due to Prof. Atanasoff, the computer pioneer. The
intellectual property was, therefore, not proprietary. In general, the final system may
be composed of both proprietary and open (public) I/S entities.

One can try to get the best of the two worlds (open and closed systems) in the fol-
lowing way. Open systems bring instant availability, continuous improvement, com-
patibility and interoperability. Closed systems bring proprietary and commercial sys-
tems together with trustworthiness and dependability. We conjecture that the future
systems will be opportunity-based product developments, using the best of the both
worlds. All these systems will live, survive, and thrive in an IT-based eco-system.

One of the major reasons for commoditizing I/S is that it may offer strong stan-
dards for availability, dependability, security, etc. We envision that there will be spe-
cialized I/S that will provide every system with its own security system for protection
(e.g. specialized firewalls). All devices in the system (home, web site, portals, etc.)
will be protected by their dedicated security system.

We also envision that I/Ss will be equipped with special core competencies. Such
I/Ss help to create, sustain, protect and evolve new products and services that will be
befitting their overall purpose and application domains. In this respect, an I/S will be
a part of the IT eco-system, where the products are conceived, born, grow, live, thrive
and procreate. The challenge is to identify and develop appropriate I/Ss to fit the tar-
get system into the IT eco-system.

Building survivable systems will require specifying a specialized eco-system to
support I/S’s for a spectrum of applications based on properties such as real time
criticality, security, safety, pervasiveness etc. The eco-system, along with the I/S

228 C.V. Ramamoorthy and R. Seker

systems within it, can serve as a part of the system’s immune system, providing in-
stant protection, security and dependability during its lifecycle.

We may start by prioritizing the list of services and functions; identify possible
product designs with their I/S needs; chart a family genealogical tree of product evo-
lution (a road-map of future products—a la Utterback’s Dominant Product concept
[10]); select I/S design requirements for the family of products; use the services of
application service providers to locate and utilize these needed elements/components
(essentially Application Service Providers’ become I/S service providers). In sum-
mary, we need to start off with a good evolutionary design of I/S system that can be
evolved, adapted, and modified incrementally as we go. Then we can design our sys-
tems based on such I/S’s.

Educational and research issues include disaster-hardening the I/S. That is, how we
protect I/S from disasters and catastrophes. Disaster hardening of an I/S is an impor-
tant area for future research. Testing I/S is going to be one of the difficult problems
we will have to address since the classical testing methodologies may not apply to
testing an I/S. Identification of appropriate development environments for disaster-
hardened I/S is another fruitful research direction. As an educational initiative, we see
it necessary to include I/S engineering and disaster engineering in today’s engineering
curricula so that the future engineers can build disaster free, safe and secure I/Ss.

Acknowledgement

The authors would like to express their gratefulness to Prof. Herbert Weber of Tech-
nical University of Berlin for introducing them to the area of infrastructures and to
Prof. Sumit Ghosh of the University of Texas at Tyler for very constructive evalua-
tion of the manuscript and many inspiring suggestions.

References

1. Financial Times. February 27 (2004)
2. Ramamoorthy, C. V., Seker, R., Disaster Engineering. Proceedings of the 22nd Interna-

tional System Safety Conference (ISSC 2004), Providence, Rhode Island (2004)
3. HP’s Next Big Thing. Silicon Valley Biz Ink on October 31 (2003)
4. Grove, A., Only the Paranoid Survive, Doubleday, April (1999)
5. Ashby, W. R., Requisite Variety and its Implications for the Control of Complex Systems.

Cybernetica, Vol. 1, No. 2 (1958) 1-17
6. Forrest, S., Hofmeyr, A. S., Somayaji, A., Computer Immunology. Commun. ACM, Vol.

40, No. 10, (1997) 88-96
7. Somayaji, A., How to Win and Evolutionary Arms Race. IEEE Security and Privacy, Vol.

2, No. 6, (2004) 70-72
8. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D., On the Effective-

ness of Address Space Randomization. Proceedings of the ACM Conference on Computer
Security (2004)

9. Raymond, E.: The Cathedral and The Bazaar. O’Reily (2001)
10. Utterback, J. M., Suárez, F. F., Patterns of Industrial Evolution, Dominant Designs, and

Firms’ Survival, Robert Burgelman and Richard Rosenbloom (eds.) Research on Techno-
logical Innovation, Management and Policy, JAI Press, Vol. 6, (1993) 47-87

The Trajectory Approach for the End-to-End

Response Times with Non-preemptive FP/EDF*

Steven Martin1, Pascale Minet2, and Laurent George3

1 Université Paris 12, LIIA, 120, rue Paul Armangot, 94400 Vitry, France
steven.martin@esiee.org

2 INRIA, Domaine de Voluceau, Rocquencourt, 78153 Le Chesnay, France
pascale.minet@inria.fr

3 Ecole Centrale d’Electronique, LACSC, 53 rue de Grenelle, 75007 Paris, France
laurent.george@ece.fr

Abstract. We focus on non-preemptive Fixed Priority (fp) schedul-
ing. Unlike the classical approach, where flows sharing the same priority
are assumed to be scheduled arbitrarily, we assume that these flows are
scheduled Earliest Deadline First (edf), by considering their absolute
deadline on their first visited node. The resulting scheduling is called
fp/edf∗. In this paper, we establish new results for fp/edf∗ in a dis-
tributed context, first when flows follow the same sequence of nodes (the
same path). We then extend these results when flows follow different
paths. We show how to compute an upper bound on the end-to-end re-
sponse time of any flow when the packet priority is computed on the
first node and left unchanged on any subsequent node. This alleviates
the packet processing in core nodes. For that purpose, we use a worst
case analysis based on the trajectory approach, that is less pessimistic
than classical approaches. We compare our results with those provided
by the holistic approach: the benefit can be very high.

Keywords: Trajectory approach, end-to-end response time, determin-
istic guarantee, quality of service, QoS network, fixed priority, earliest
deadline first, holistic approach.

1 Context and Motivations

Fixed Priority scheduling has been extensively studied in the last years [1,2]. It
exhibits interesting properties:

• The impact of a new flow τi is limited to flows having priorities smaller than
or equal to this of τi;

• It is well adapted for service differentiation: flows with high priorities have
smaller response times;

• It is easy to implement.

We focus on non-preemptive Fixed Priority scheduling of sporadic flows. Indeed,
with regard to flow scheduling, the assumption generally admitted is that packet
transmission is not preemptive. Several flows may have to share the same priority
in the following cases:

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 229–247, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

230 S. Martin, P. Minet, and L. George

• The number of priorities available on a processor is less than the number of
flows considered;

• The priority of a flow is determined by external constraints and cannot be
chosen arbitrarily;

• A class-based scheduling is used.

The classical analysis of Fixed Priority scheduling assumes that flows shar-
ing the same priority are scheduled arbitrarily. The worst case response times
obtained with this analysis can be improved, if the scheduling algorithm of flows
sharing the same priority is accounted for. We propose to schedule such flows
according to Earliest Deadline First (edf). Indeed, edf has been proved optimal
[2,3] for a uniprocessor in both preemptive and non-preemptive context when the
packets release times are not known in advance. edf optimality means that if for
a given scheduling problem, edf fails to find a feasible solution, then there is no
solution for this problem. That is why, we propose a new scheduling algorithm,
called fp/edf∗, combining fixed priorities and deadlines. The star expresses the
fact that the absolute deadline of a packet is computed on its first visited node
and is used for arbitration by all nodes visited.

In this paper, we first focus on the worst case response time obtained with
fp/edf∗ when all flows follow the same sequence of nodes. Then, we extend our
results to the case where flows follow different paths. These results can be used
in various configurations where several flows can share the same priority. Hence
the interest of fp/edf∗.

• In a Differentiated Services architecture [5], several classes are defined, each
having its own priority. The highest priority class, that is the Expedited
Forwarding (ef) class, is scheduled Fixed Priority with the other classes.
Moreover, if packets belonging to the ef class need to be differentiated,
different priorities can be assigned to these packets. Hence, a Fixed Priority
scheduling can be used to provide the required differentiation.

• In an Integrated Services architecture [6], a priority is assigned to each flow.
Fixed Priority scheduling is used to provide shorter response times to high
priority flows.

• In an hybrid architecture, flows are managed either per class or individually.

The rest of the paper is organized as follows. Section 2 briefly discusses related
work in the computation of worst case end-to-end response time. In Section 3, we
present the models and notations used in our worst case analysis. In Section 4,
we show how to compute an upper bound on the end-to-end response time of
any flow, based on a worst case analysis, when all flows follow the same sequence
of nodes. Then, in Section 5, we extend our results to the general case where
flows follow different paths. In Section 6, we compare our results, obtained by
applying the trajectory approach, with the exact worst case end-to-end response
times and with the results provided by the holistic approach. The exact values
are obtained by a validation tool we have designed. This validation tool does an
exhaustive analysis. Finally, we conclude the paper in Section 7.

The Trajectory Approach for the End-to-End Response Times 231

2 Response Time Computation in the Distributed Case

To determine the maximum end-to-end response time, several approaches can
be used: a stochastic or a deterministic one. A stochastic approach consists in
determining the mean behavior of the considered network, leading to mean,
statistical or probabilistic end-to-end response times [9,10]. A deterministic ap-
proach is based on a worst case analysis of the network behavior, leading to
worst case end-to-end response times [11,12].

In this paper, we are interested in the deterministic approach as we want to
provide a deterministic guarantee of worst case end-to-end response times for
any flow in the network. In this context, two different approaches can be used:
the holistic approach and the trajectory approach.

• The holistic approach [13] considers the worst case scenario on each node
visited by a flow, accounting for the maximum possible jitter introduced by
the previous visited nodes. If no jitter control is done, the maximum jitter will
increase throughout the visited nodes. In this case, the minimum and maximum
response times on a node h induce a maximum jitter on the next visited node
h + 1 that leads to a worst case response time and then a maximum jitter on
the following node and so on. Otherwise, the jitter can be either cancelled or
constrained.
◦ the Jitter Cancellation technique consists in cancelling, on each node, the

jitter of a flow before it is considered by the node scheduler [12]: a flow
packet is held until its latest possible reception time. Hence a flow packet
arrives at node h + 1 with a jitter depending only on the jitter introduced
by the previous node h and the link between them. As soon as this jitter
is cancelled, this packet is seen by the scheduler of node h + 1. The worst
case end-to-end response time is obtained by adding the worst case response
time, without jitter (as cancelled) on every node;

◦ the Constrained Jitter technique consists in checking that the jitter of a
flow remains bounded by a maximum acceptable value before the flow is
considered by the node scheduler. If not, the jitter is reduced to the maximum
acceptable value by means of traffic shaping.

As a conclusion, the holistic approach can be pessimistic as it considers worst
case scenarios on every node possibly leading to impossible scenarios.

• The trajectory approach [14] consists in examining the scheduling produced by
all the visited nodes of a flow. In this approach, only possible scenarios are exam-
ined. For instance, the fluid model (see [15] for gps) is relevant to the trajectory
approach. This approach produces the best results as no impossible scenario is
considered but is somewhat more complex to use. This approach can also be
used in conjunction with a jitter control (see [16] for edf). In this paper, we
adopt the trajectory approach without jitter control in a network to determine
the maximum end-to-end response time of a flow.

We can also distinguish two main traffic models: the sporadic model and the
token bucket model. The sporadic model has been used in the holistic approach

232 S. Martin, P. Minet, and L. George

and in the trajectory approach, while the token bucket model has been used only
in the trajectory approach.

• The sporadic model is classically defined by three parameters: the maximum
processing time, the minimum interarrival time and the maximum release jitter,
(see section 3). This model is natural and well adapted for real-time applications.
• The token bucket [11,15,16] is defined by two parameters: σ, the bucket size and
ρ, the token throughput. The token bucket can model a flow or a flow aggregate.
In the first case, it requires to maintain per flow information on every visited
node. This solution is not scalable. In the second case, the choice of good values
for the token bucket parameters is complex when flows have different character-
istics. A bad choice can lead to bad response times, as the end-to-end response
times strongly depend on the choice of the token bucket parameters [16,17].
Furthermore, the token bucket parameters can be optimized for a given configu-
ration, only valid at a given time. If the configuration evolves, the parameters of
the token bucket should be recomputed on every node to remain optimal. This
is not generally done.

In this paper, we adopt the trajectory approach with the sporadic traffic
model and we establish new results that we compare with those provided by the
classical holistic approach.

3 Models and Notations

3.1 Models

We investigate the problem of providing a deterministic end-to-end response
time guarantee to any flow in a network, when these sporadic flows are sched-
uled fp/edf∗. The end-to-end response time of a flow is defined between its
ingress node and its egress node. We want to provide an upper bound on the
end-to-end response time of any flow. As we make no particular assumption con-
cerning the arrival times of packets in the network, the feasibility of a set of flows
is equivalent to meet the requirement, whatever the arrival times of the packets
in the network.

In this paper, we assume that time is discrete. [7] shows that results obtained
with a discrete scheduling are as general as those obtained with a continuous
scheduling when all flow parameters are multiples of the node clock tick. Then,
any set of flows is feasible with a discrete scheduling if and only if it is feasible
with a continuous scheduling. For lack of space reasons, proofs are not included in
this paper; they can be found in [8]. Moreover, we assume the following models.

3.1.1 Network Model
We consider a network where links interconnecting nodes are supposed to be fifo
and the network delay between two nodes has known lower and upper bounds:
Lmin and Lmax. Moreover, we consider neither network failures nor packet losses.

The Trajectory Approach for the End-to-End Response Times 233

3.1.2 Traffic Model
We consider a set τ = {τ1, ..., τn} of n sporadic flows. Each flow τi follows a
sequence of nodes whose first node (denoted f irsti) is the ingress node of the
flow and whose last node (denoted lasti) is the egress node of the flow. In the
following, we call path this sequence. In this paper, we assume that the path
followed by a flow is fixed. This can be obtained, for instance, with mpls or
Source Routing. Moreover, a sporadic flow τi following a path Pi is defined by:

• Ti, the minimum interarrival time (called period) between two successive
packets of τi;

• Ch
i , the maximum processing time on node h ∈ Pi of a packet of τi;

• Ji, the maximum jitter of packets of τi arriving in the network. A packet is
subject to a release jitter if there exists a non-null delay between its gener-
ation time and the time where it is accounted for by the scheduler;

• Di, the end-to-end deadline of τi, that is the maximum end-to-end response
time acceptable for any of its packets. Then, a packet of τi generated at time
t must be delivered at time t + Di.

3.1.3 Scheduling Model
We consider that all nodes in the network schedule packets according to non-
preemptive fp/edf∗. Therefore, the node scheduler waits for the completion of
the current packet transmission (if any) before selecting the next packet.

For any flow τi, when a packet of τi, requested at time t, arrives on node
f irsti, the first node visited, it is marked with its static priority Pi and its abso-
lute deadline, equal to t + Dfirsti

i , where Dfirsti

i is the relative deadline of flow
τi on node f irsti. This solution presents the additional advantage of requiring
clock synchronization only in the ingress nodes to assign to each incoming packet
its absolute deadline. The computation of Dfirsti

i is made from the end-to-end
deadline Di. Solution can be found in [12].

Let Dfirsti

i be the relative deadline attributed to flow τi on its first node
visited, denoted f irsti. The local deadline is computed from the end-to-end
deadline. For instance, with a uniform assignment, the local deadline is equal to
�Di/q�, where q denotes the number of nodes visited by τi. With this assign-
ment, a flow τi having an end-to-end deadline Di but visiting few nodes has an
intermediate deadline Dfirsti

i higher than a flow τj with the same end-to-end
deadline but visiting more nodes. Other solutions exist, for instance solutions
accounting for the workload of the visited nodes. The determination of the best
value is out of the scope of this paper.

Each node visited by this packet schedules it according to fp/edf∗ account-
ing for its fixed priority Pi and its absolute deadline t + Dfirsti

i , computed on
node f irsti. This scheduling rule ensures that for any packet m of τi, requested
at time t on node f irsti, all visited nodes take their scheduling decision on ex-
actly the same values of both the fixed priority Pi and the absolute deadline
t + Dfirsti

i . Notice that edf∗ is applied on t + Dfirsti

i on each visited node, but
the end-to-end deadline that must be met by flow τi is t + Di.

234 S. Martin, P. Minet, and L. George

Hence, priority of packet m belonging to flow τi is higher than or equal to
this of packet m′ belonging to flow τj and generated at time t′ if and only if:
(Pi > Pj) or (Pi = Pj and t + Dfirsti

i ≥ t′ + D
firstj

j).

Property 1. FP/EDF∗ ensures that for any packets m and m′, if m has a pri-
ority higher than m′ on a node, then this is true on any visited node.

Notice that Property 1 does not imply that the scheduling order is the same
on all nodes. Indeed, let us consider the case illustrated by Figure 1, where the
generalized priority of a packet m′ is higher than this of m. Suppose that node 1
is idle when m arrives. Packet m is then immediately processed. Packet m′,
arrived after, has to wait. Suppose that node 2 is busy when m and m′ arrive.
Packet m′ is then processed before packet m according to their priorities.

Fig. 1. The scheduling order depends on the node

3.2 Notations

We consider n real-time flows. This set of flows is denoted τ = {τ1, τ2, ..., τn}.
Let τi ∈ τ (then i ∈ [1, n]) following a path Pi. We focus on the packet m of τi

generated at time t. We denote Pi the fixed priority of flow τi. We then define
the three following sets:

• hpi = {j ∈ [1, n] , Pj > Pi} ;
• spi = {j ∈ [1, n] , j �= i , Pj = Pi} ;
• lpi = {j ∈ [1, n] , Pj < Pi}.

Therefore, if j ∈ hpi (respectively lpi), the fixed priority of flow τj is higher
(respectively lower) than the fixed priority of flow τi. If j ∈ spi, flows τj and
τi share the same fixed priority. In this case, packets are scheduled according
to their dynamic priorities. We then have to distinguish two kinds of flows: (i)
flows that are able to generate packets with a dynamic priority higher than this
of packet m and (ii) flows that are not able to generate such packets.

Let m be the packet of any flow τi generated at time t. For any flow τj , if
j ∈ spi(t), then after time t+Dfirsti

i −D
firstj

j , τj can no longer generate packets
with a dynamic priority higher than this of m. Then, for any time t ≥ −Ji, we
denote:
• spi(t) = {j ∈ spi , −Jj ≥ t + Dfirsti

i − D
firstj

j } ;

• spi(t) = {j ∈ spi ,−Jj < t + Dfirsti

i − D
firstj

j }.

The Trajectory Approach for the End-to-End Response Times 235

In the following, we denote h′ <i h (resp. h′ >i h) if node h′ is visited before
(resp. after) node h by flow τi. We also denote:

• Pi = [f irsti, ..., lasti], the path followed by flow τi, with f irsti (resp. lasti)
the ingress node (resp. the egress node) of the flow in the network;

• |Pi|, the cardinal of path Pi, that is the number of nodes visited by flow τi;
• slowi, the slowest node visited by flow τi on path Pi, that is: ∀h ∈ Pi,

Cslowi

i ≥ Ch
i ;

• Pj,i = [f irstj,i, ..., lastj,i], the subpath followed by both flows τi and τj , with
f irstj,i (resp. lastj,i) the first node (resp. the last node) visited by both τi

and τj . Notice that Pj,i = Pi,j ;
• slowj,i, the slowest node visited by flow τj on subpath Pj,i, that is: ∀h ∈ Pj,i,

C
slowj,i

j ≥ Ch
j .

Finally, we adopt the following notations:

• Ri, the worst case end-to-end response time of flow τi;
• Rh

i , the maximum sojourn time of flow τi on node h;
• Smin

h
i , the minimum time taken by a packet of flow τi to go from its source

node to node h;
• Smax

h
i , the maximum time taken by a packet of flow τi to go from its source

node to node h;
• Wh

i (t), the latest starting time on node h of the packet of flow τi generated
at time t.

We now recall the definition of the processor utilization factor for a set of
flows.

Definition 1. For any node h, the processor utilization factor of a set S ⊂ τ of
flows is equal to

∑
j∈S(Ch

j /Tj). This factor represents the fraction of processor
time spent by node h to process packets belonging to S.

4 Trajectory Approach When Flows Follow the Same
Path

4.1 Methodology

We consider that all flows follow the same path P in the network, that is the
same sequence of nodes consisting of q nodes numbered from 1 to q. We want
to determine the end-to-end response time of any packet m, requested at time
t and belonging to any flow τi. With non-preemptive scheduling, if a packet
arrives on any visited node h after m starts its processing, then it cannot delay
m. Hence, we compute the latest starting time of m on node q, the last node
visited. The mathematical expression of this latest starting time, that is an
iterative expression, is analyzed (subsection 4.2).

Finally, we deduce from this time a bound on the end-to-end response time
(subsection 4.3). Moreover, we show how to get a more accurate value of the
delay due to packets with a priority less than m (subsection 4.4).

236 S. Martin, P. Minet, and L. George

To determine the latest starting time of packet m, we identify the busy
periods of level corresponding to m’s priority1 that affect the delay of m. For
this, we consider the busy period of level corresponding to m’s priority, denoted
bpq

i,t, in which m is processed on node q and we define f(q) as the first packet
processed in bpq

i,t with a priority greater than or equal to m’priority. Due to the
non-preemptive effect, the execution of f(q) can be delayed once by a packet
with a priority less than m’priority. Hence, any packet between f(q) and m has
a priority greater than or equal to m’priority.

Fig. 2. Busy periods of level corresponding to m’priority

The packet f(q) has been processed in a busy period on node q − 1 at least
of level Pi,t+D1

i
. Let bpq−1

i be this busy period. We then define f(q − 1) as the
first packet processed in bpq−1

i with a priority less than or equal to m’priority.
And so on until the busy period of node 1 in which the packet f(1) is processed
(see Figure 2).

Lemma 1. When all flows follow the same path P consisting of q nodes num-
bered from 1 to q and are scheduled according to FP/EDF∗, then the maximum
delay incurred by the packet belonging to any flow τi, requested at time t on
node 1, due to packets with a higher generalized priority is bounded by the max-
imum workload generated by:

• flows τj ∈ hpi in [−Jj , max(0 ; W q
i (t) − M1,q

j)];
• flows τj ∈ spi(t) in [−Jj, max(0; min(W q

i (t) − M1,q
j ; t + D1

i − D1
j))];

• flow τi in [−Ji, t].

4.2 Latest Starting Time

We now compute the latest starting time of any packet m belonging to τi, re-
quested at time t, as explained in the previous section.

Lemma 2. When all flows follow the same path P consisting of q nodes num-
bered from 1 to q and are scheduled according to FP/EDF∗, then for any packet
1 A busy period of level L is defined by an interval [t, t′) such that t and t′ are both

idle times of level L and there is no idle time of level L in (t, t′). An idle time t of
level L is a time such that all packets with a priority greater than or equal to L
generated before t have been processed at time t.

The Trajectory Approach for the End-to-End Response Times 237

belonging to any flow τi, requested at time t on node 1, its latest starting time
in node q is given by:

W q
i (t) =

∑
j∈hpi

(
1 +

⌊
max(0 ; W

q
i (t)−M

1,q
j)+Jj

Tj

⌋)
· Cslow

j

+
∑

j∈spi(t)

(
1+

⌊
max(0;min(W

q
i

(t)−M
1,q
j

;t+D1
i −D1

j))+Jj

Tj

⌋)
·Cslow

j

+
(
1 +

⌊
t+Ji

Ti

⌋)
· Cslow

i

+
q∑

h=1
h�=slow

maxj∈hpi∪spi(t)∪{i}
{
Ch

j

}− Cq
i + εi(t) + (q − 1) · Lmax.

As we can see in Lemma 2, the latest starting time of packet m is an iterative
formula. Then, we consider the following series, denoted Wq

i (t) and establish
Condition 1 that proves the existence of W q

i (t), solution of the equation given
in Lemma 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wq (0)
i (t) =

∑
j∈hpi∪spi(t)

Cslow
j +

(
1+
⌊

t+Ji
Ti

⌋)
·Cslow

i +
q∑

h=1
h�=slow

maxj∈hpi∪spi(t)∪{i}
{
Ch

j

}
−Cq

i + εi(t) + (q − 1) · Lmax

W
q (p+1)
i (t) =

∑
j∈hpi

(
1+

⌊
max

(
0 ;W

q (p)
i (t)−M

1,q
j

)
+Jj

Tj

⌋)
·Cslow

j

+
∑

j∈spi(t)

(
1+

⌊
max(0;min(W

q (p)
i (t)−M

1,q
j ;t+D1

i −D1
j))+Jj

Tj

⌋)
·Cslow

j

+
(
1 +

⌊
t+Ji

Ti

⌋)
· Cslow

i +
q∑

h=1
h�=slow

maxj∈hpi∪spi(t)∪{i}
{
Ch

j

}
−Cq

i + εi(t) + (q − 1) · Lmax.

Condition 1. For any flow τi, for any time t ≥ −Ji where a packet of τi is
requested on node 1, if Uslow

hpi∪spi(t)
< 1, where Uslow

hpi∪spi(t)
denotes the utiliza-

tion factor on node slow for the flows belonging to hpi ∪ spi(t), then Wq
i (t) is

convergent.
We recall that a necessary condition for the feasibility of a set of flows is:

∀h ∈ L, Uh ≤ 1, where Uh =
∑n

j=1 Ch
j /Tj denotes the utilization factor on node

h. Hence, Condition 1 is not restrictive. Indeed, if Uslow ≤ 1, then Uslow
hpi∪spi(t)

< 1.

4.3 Worst Case End-to-End Response Time

The worst case end-to-end response time of flow τi is equal to the maximum of
the worst case end-to-end response times of its packets. Then, we have:

Ri = maxt≥−Ji{W
q
i (t) + Cq

i − t}. The three following lemmas show that only a
limited set of arrival times in the network has to be tested to obtain Ri.

238 S. Martin, P. Minet, and L. George

Lemma 3. Let T be the ordered set of times t such that t = k·Tj−Jj−D1
i +D1

j ≥
−Ji, where k ∈ N and j ∈ spi ∪ {i}. Let t1 and t2 be two consecutive times of
T . Then, ∀ t′ ∈ [t1, t2), W q

i (t′) = W q
i (t1).

Lemma 4. For any flow τi ∈ τ , for any t greater than or equal to maxk∈spi

{D1
k} − D1

i − mink∈spi{Jk}, we have: spi(t) = ∅.

Lemma 5. For any flow τi ∈ τ , for any time t greater than or equal to:
maxk∈spi{D1

k}−D1
i −mink∈spi{Jk}, we have: W q

i (t + Bslow
i) ≤ W q

i (t) + Bslow
i ,

with: Bslow
i =

∑
j∈hpi∪spi∪{i}�Bslow

i /Tj� · Cslow
j .

Hence, to compute this worst case response time, we have only to consider
times t ≥ −Ji such that: t = k · Tj − Jj − D1

i + D1
j and

t < maxk∈spi{D1
k} − D1

i − mink∈spi{Jk} + Bslow
i , with k ∈ N and j ∈ spi ∪ {i}.

Property 2. When all flows follow the same path P consisting of q nodes num-
bered from 1 to q and are scheduled according to FP/EDF∗, the worst case end-
to-end response time of any flow τi meets:
Ri = maxt∈T ′ {W q

i (t) + Cq
i − t}, where:

W q
i (t) =

∑
j∈hpi

(
1 +

⌊
max(0 ; W

q
i (t)−M

1,q
j)+Jj

Tj

⌋)
· Cslow

j

+
∑

j∈spi(t)

(
1+

⌊
max(0;min(W

q
i (t)−M

1,q
j ;t+D1

i −D1
j))+Jj

Tj

⌋)
·Cslow

j

+
(
1 +

⌊
t+Ji

Ti

⌋)
· Cslow

i

+
q∑

h=1
h�=slow

maxj∈hpi∪spi(t)∪{i}
{
Ch

j

} − Cq
i + εi(t) + (q − 1) · Lmax.

and T ′ denotes the ordered set of times t ≥ −Ji such that: t = k·Tj−Jj−D1
i +D1

j

and t < maxk∈spi{D1
k}−D1

i −mink∈spi{Jk}+Bslow
i , with k ∈ N and j ∈ spi∪{i}.

It is important to notice that the cardinal of set T ′ only depends on flow τi

and flows having the same priority. We can also notice that in the single node
case, this bound is exact.

Property 3. In the single node case, the bound given by property 2 is this given
in [8] in the uniprocessor context. Indeed, we get:
Ri = maxt∈T ′

{
W 1

i (t) + C1
i − t

}
, where:

W 1
i (t) =

∑
j∈hpi

(
1 +
⌊

W 1
i (t)+Jj

Tj

⌋)
· C1

j

+
∑

j∈spi(t)

(
1 +
⌊

min(W 1
i (t);t+D1

i −D1
j)+Jj

Tj

⌋)
· C1

j

+
⌊

t+Ji

Ti

⌋
· C1

i + max
(
0 ; maxj∈lpi∪spi(t)

{
C1

j

})
,

and T ′ denotes the ordered set of times t ≥ −Ji such that: t = k·Tj−Jj−D1
i +D1

j

and t < maxk∈spi{D1
k}−D1

i −mink∈spi{Jk}+B1
i , with k ∈ N and j ∈ spi ∪{i}.

The Trajectory Approach for the End-to-End Response Times 239

4.4 Non-preemptive Effect

With non-preemptive scheduling on any node h, any packet m of flow τi, re-
quested at time t on node 1, can be delayed by a packet m′ with a smaller
priority if m′ has started its processing before the arrival on node h of m. The
following lemma gives an upper bound on the maximum delay incurred by m
and directly due to packets belonging to lpi ∪ spi(t).

Lemma 6. When all flows are scheduled FP/EDF∗ and follow the same path P
consisting of q nodes numbered from 1 to q, the maximum delay incurred by the
packet m of any flow τi, requested at time t on node 1, directly due to packets
belonging to lpi ∪ spi(t) meets: εi(t) ≤

∑q
h=1 max(0 ; maxj∈lpi∪spi(t)

{Ch
j } − 1).

Proof: By definition, no packet of flows belonging to lpi∪spi(t) can be processed
in a busy period of level corresponding to m’priority, except the first packet of
this busy period (see Section 4.2). Hence, the maximum delay incurred by any
packet m of flow τi directly due to packets belonging to lpi ∪ spi(t) cannot be
greater than max(0 ; maxj∈lpi∪spi(t)

{Ch
j } − 1) on each node h visited.

We now improve the bound given in Lemma 6 on the maximum delay incurred
by a packet of τi, requested at time t on node 1, directly due to packets belonging
to lpi ∪ spi(t).

Property 4. When all flows are scheduled FP/EDF∗ and follow the same path
P consisting of q nodes numbered from 1 to q, the maximum delay incurred by
the packet m of any flow τi, requested at time t on node 1, directly due to packets
belonging to lpi ∪ spi(t) meets:
εi(t) ≤ max

(
0 ; maxj∈lpi∪spi(t)

{
C1

j

}
− 1
)

+
∑

h∈(1,q]

max
(
0 ; δi ·

(
maxj∈lpi∪spi(t)

{
Ch

j

}
− Ch−1

i + Lmax − Lmin
))

,

where ∀h ∈ P, maxj∈lpi∪spi(t)
{Ch

j } = 0 if lpi ∪ spi(t) = ∅
and δi = 1 if lpi ∪ spi(t) �= ∅ and 0 otherwise.

Proof: See [18].

5 Trajectory Approach When Flows Follow Different
Paths

5.1 Methodology

When flows follow different paths, we proceed in two steps to compute their
worst case end-to-end response times. Indeed, for the sake of simplicity, we first
adopt Assumption 1: With regard to any flow τi, we consider that any flow τj

following path Pj with Pj �= Pi and Pj

⋂
Pi �= ∅ never visits a node of path

240 S. Martin, P. Minet, and L. George

Pi after having left this path. In the second step, we show how to remove this
assumption (see Subsection 5.4).

Assumption 1. Let τi be a flow of H following path Pi. For any flow τj ∈
hpi ∪ spi following path Pj with Pj �= Pi and Pj

⋂
Pi �= ∅ , if there exists a node

h ∈ Pj

⋂
Pi such that the node visited by τj immediately after h is not the one

visited by τi, then τj never visits a node h′′ belonging to Pi after.

Fig. 3. Assumption 1

On Figure 3, if flow τ2 belongs to hp1 ∪ sp1, Assumption 1 is not met. We
will see in Section 5.4 how to remove this assumption and extend our results to
the general case.

5.2 Worst Case End-to-End Response Time

In [18], the worst case end-to-end response time of any flow τi ∈ τH has been
established. We recall this result in the following property. We denote �x�+ =
max(0 ; �x�) and prei(h) the node visited before node h by flow τi.

Property 5. When flows are scheduled FP/EDF∗, if
∑

j∈hpi∪spi(t)
U

firstj,i

j < 1,
then the worst case end-to-end response time of any flow τi is bounded by:
Ri = max

t∈Ti

{
W lasti

i (t) − t
}

+ Clasti

i , with :

W lasti

i (t) =
∑

j∈hpi

(
1 +
⌊

W
lastj,i
i (t)−Smin

lastj,i
j −M

firstj,i
i (t)+Smax

firstj,i
j +Jj

Tj

⌋+
)

· Cslowj,i

j ;

+
∑

j∈spi(t)

⎛
⎝1 +

⌊
min

(
t+D

firsti
i −D

firstj
j ; W

lastj,i
i (t)−Smin

lastj,i
j

)
−M

firstj,i
i (t)+Smax

firstj,i
j +Jj

Tj

⌋+
⎞
⎠ · Cslowj,i

j

+
(
1 +
⌊

t+Ji

Ti

⌋)
· Cslowi

i − Clasti

i +
∑

h∈Pi
h�=slowi

max
j∈hpi∪spi(t)∪{i}

{
Ch

j

}
+ εi(t) + (|Pi| − 1) · Lmax,

M
firstj,i

i =
∑prei(firstj,i)

h=firsti

(
minj∈hpi∪spi(t)∪{i}{Ch

j } + Lmin
)

and Ti the set of times t such that:

The Trajectory Approach for the End-to-End Response Times 241

• −Ji ≤ t < t
∅
i + Bslowi

i , where t
∅
i is the first time t such that spi(t) = ∅ and

Bslowi

i =
∑

j∈hpi∪spi(t)∪{i}

⌈
B

slowi
i

Tj

⌉
· Cslowj,i

j ;

• ∃ j and l belonging to spi(t)∪ {i} such that t = −Jj + kj · Tj + M
firstj,i

i (t)−
Smax

firstj,i

j + Dfirsti

i − D
firstl,i

l , kj ∈ N.
Proof: See [18].

Explanations

In Property 5, if m denotes the packet of flow τi generated at time t, we have:
• The first term of W lasti

i (t) represents the maximum delay incurred by m due
to packets having higher fixed priorities;

• The second term represents the maximum delay incurred by packet m due
to packets having the same fixed priority but higher dynamic priorities;

• The difference between the third term and the fourth one represents the
maximum delay incurred by packet m due to previous packets of flow τi;

• εi(t) represents the delay directly due to the non-preemptive effect;
• The last term represents the maximum transmission delay.

Worst case end-to-end response time algorithm

To compute the worst case end-to-end response time of any flow τi ∈ τ when
Assumption 1 is met, we apply the following algorithm:
• We first determine the set Si of flows belonging to hpi ∪spi crossing directly

or indirectly flow τi. τj belongs to Si iff τj ∈ hp ∪ spi and directly crosses
either τi or a flow τk ∈ Si.

• We then initialize for the iteration q = 1 the value of Smax
firstj,k

j (q) for any
flow τk ∈ Si and for any flow τj crossing τk. We have:
Smax

firstj,k

j (1) =
∑pre(firstj,k)

h=firstj
(Ch

j + Lmax).
• We then proceed iteratively as follows:

q = 0
Repeat

q=q+1
for any flow τk ∈ Si

for h from f irstk to lastk
if (h = lastk) or (∃τj crossing τk such that
h = lastj,k or h = prek(f irstk,j)) then

compute Wh
k (t)

if ∃j such that h = prek(f irstk,j) then
Smax

firstk,j

k (q + 1) = maxt(Wh
k (t) − t) + Ch

k + Lmax

if h = lastk then
compute Rk = maxt(Wh

k (t) − t) + Ch
k

Until (∃τk ∈ Si, Rk > Dk)
or (∀τk ∈ Si, ∀h = prek(f irstk,j) Smax

firstk,j

k (q + 1) = Smax
firstk,j

k (q))

242 S. Martin, P. Minet, and L. George

5.3 Non-preemptive Effect

We recall that packet scheduling is non-preemptive. Hence, despite the high pri-
ority of any packet m, released at time t, a packet with a lower priority can delay
m processing due to non-preemption. Indeed, if a packet m of any flow τi arrives
on node h while a packet m′ belonging to lpi ∪ spi(t) is being processed, m has
to wait until m′ completion.

It is important to notice that the non-preemptive effect is not limited to this
waiting time. The delay incurred by packet m on node h directly due to m′ may
lead to consider packets belonging to hpi∪spi(t), arrived after m on the node but
before m starts its execution. Then, we denote εi(t) the maximum delay incurred
by packet m while following its path directly due to the non-preemptive effect.

Property 6. Let τi ∈ τ , be a flow following path Pi = [f irsti, ..., lasti]. When
flows are scheduled FP/EDF∗, the maximum delay incurred by the packet of τi

generated at time t directly due to packets having a smaller priority meets:

εi(t) ≤ max
(
0 ; maxj∈lpi∪spi(t)

{
Cfirsti

j

}
− 1
)

+
∑

h∈Pi
h�=firsti

max
(

0 ; max j∈lpi∪spi(t)
firstj,i=h

{
Ch

j

}
− 1 ; δi ·

(
max j∈lpi∪spi(t)

firstj,i �=h

{
Ch

j

}
− Ch−1

i + Lmax − Lmin

))
,

where ∀h ∈ Pi, maxj∈lpi∪spi(t)
{Ch

j } = 0 if lpi ∪ spi(t) = ∅
and δi = 1 if lpi ∪ spi(t) �= ∅ and 0 otherwise.

Proof: See [18].

5.4 Generalization

Property 5, giving the worst case end-to-end response time of any flow τi ∈ τ
following path Pi, can be extended to the general case (i.e. by removing Assump-
tion 1). To achieve that, the idea is to consider any flow τj ∈ hpi ∪ spi crossing
path Pi after it left Pi as a new flow. We proceed by iteration until meeting
Assumption 1. We then apply Property 5 considering all these flows.

For example, in Figure 4, to compute the worst case end-to-end response
time of flow τi following path Pi = {1, 3, 4, 5, 6, 8, 10, 11, 12}, flow τj following
path Pj = {2, 3, 4, 5, 7, 9, 10, 11, 12} has to be decomposed in two flows to meet
Assumption 1, that is:

Fig. 4. Decomposition of flow τj into subflows

The Trajectory Approach for the End-to-End Response Times 243

• τj1, following path Pj1 = [2, 3, 4, 5];
• τj2, following path Pj2 = [7, 9, 10, 11, 12].

Then, each of these two flows crosses path Pi only once. It is important to
notice that the release jitter of flow τj2 is equal to the output jitter of flow τj1

on node lastj1,i = 5 plus Lmax − Lmin.

6 Comparative Evaluation

We now propose to compare the trajectory approach with the holistic one and
with the exact values obtained by a validation tool we have developed. We first
recall the computation principle of the worst case end-to-end response time in
the distributed case when applying the holistic approach. Then, we give several
examples that illustrate how close our results based on the trajectory approach
are to the exact results. We also compare our results to these obtained by the
holistic approach.

6.1 Worst Case End-to-End Response Time by the Holistic
Approach

We now apply the holistic approach to compute the worst case end-to-end re-
sponse time of any flow τi, when all flows follow the same path P . We denote
Rmax

h
j (resp. Rmin

h
j) the maximum (resp. the minimum) response time experi-

enced by packets of flow τj in node h and Jh
j its worst case jitter when entering

node h.
The holistic approach proceeds iteratively and starts with node 1. Knowing

the value of J1
j for any j ∈ [1, n], we compute Rmax

1
j using Property 3 and

Rmin
1
j = C1

j . We proceed in the same way for any node h, h ∈ (1, q].
Knowing the value of Jh

j =
∑

k=1..h−1(Rmax
k
j − Rmin

k
j) + (h − 1) · (Lmax −

Lmin), ∀j ∈ [1, n], we compute Rmax
h
j using Property 3 and Rmin

h
j = Ch

j . Then,
a bound on the end-to-end response time of flow τi is given by:∑q

h=1 Rmax
h
i −
∑q

h=2 Jh
i + (q − 1) · Lmax.

6.2 Examples

In this section, we give examples of bounds on the end-to-end response times of
flows in a network. We successively consider two cases:

• All flows follow the same path (Subsection 6.2.1);
• Flows follow different paths (Subsection 6.2.2).

We assume that τ = {τ1, τ2, τ3, τ4, τ5}, all flows having a period equal to
36 and entering the network without jitter. Moreover, we assume that Lmax =
Lmin = 1. We have developed a simulation tool providing the exhaustive solu-
tion of a real-time scheduling problem in a network. Indeed, once the different
parameters have been specified, all the possible scenarios are generated and fea-
sibility of the flow set is checked for each of them. The simulation result is a file
containing the exact worst case end-to-end response time of each flow.

244 S. Martin, P. Minet, and L. George

6.2.1 Examples with a Single Path
In this subsection, all flows follow the same path consisting of 5 nodes (q = 5).
For any flow τi, we have D1

i = �Di/q�. Table 1 gives the priority and the end-
to-end deadline of each flow we consider.

Table 1. Priorities and end-to-end deadlines

τ1 τ2 τ3 τ4 τ5

Pi 1 1 2 2 3

Di 47 50 44 45 39

Fig. 5. Worst case end-to-end response times

We first consider that all packets have a maximum processing time equals to
4 on each visited node, that is: ∀ i ∈ [1, 5], ∀h ∈ [1, 5], Ch

i = 4. Figure 5 gives for
any flow τi the exact value of its worst case end-to-end response time and the
value computed according to the trajectory approach. To show the improvement
of our results compared with those obtained by the classical technique, we also
include the value computed according to the holistic approach. Notice that the
values given by the trajectory approach are exact for all flows, whereas those
provided by the holistic approach are up to 5.5 times the exact values.

We now consider a more general case, by assuming that the maximum pro-
cessing time of a flow is not the same on each visited node. More precisely, we
consider ten configurations, numbered from 1 to 10 in Table 2. In each of them,
the load is equal to 83.3%.

Figure 6 gives for flow τ4 the exact value of its worst case end-to-end response
time and the value computed according to the trajectory approach in each con-
figuration. The value computed according to the holistic approach is also given.
We observe that the values provided by the trajectory approach are exact or
very close to the exact values (maximum deviation of +7.14%). Concerning the
bounds provided by the holistic approach, they are very pessimistic. Indeed,
these values are about two times the exact ones, whatever the configuration.

The Trajectory Approach for the End-to-End Response Times 245

Table 2. Processing time of any flow τi on each node for 10 configurations

Configurations

1 2 3 4 5 6 7 8 9 10

C1
i 6 2 5 4 3 4 5 5 2 6

C2
i 2 6 3 2 5 6 4 3 6 2

C3
i 5 4 6 6 2 2 3 4 3 3

C4
i 3 3 2 3 6 5 2 6 5 4

C5
i 4 5 4 5 4 3 6 2 4 5

Fig. 6. End-to-end response time of flow τ4

Table 3. Priorities and end-to-end deadlines

τ1 τ2 τ3 τ4 τ5

Pi 10 10 11 11 12

Di 47 50 49 49 39

6.2.2 Example with Different Paths
In this subsection, we give an example of bounds on the end-to-end response
times of real-time flows in a network, when these flows are scheduled according
to fp/edf∗. We consider that the network meets: Lmax = Lmin = 1. Moreover,
we assume that: τ = {τ1, τ2, τ3, τ4, τ5}. All these flows have a period equal to
36 and enter the network without jitter. The maximum processing time of any
packet of flow τi on node h ∈ Pi is assumed to be equal to 4. Moreover, for any
flow τi, we have Dfirsti

i = �Di/|Pi|�. Table 3 gives the fixed priority and the
end-to-end deadline of each real-time flow.

The path taken by each flow is defined as follows:

- P1 = {1, 3, 4, 5}; - P4 = {2, 3, 4, 7, 10, 11};
- P2 = {9, 10, 7, 6}; - P5 = {2, 3, 4, 7, 8}.
- P3 = {2, 3, 4, 7, 10, 11};

246 S. Martin, P. Minet, and L. George

Table 4. End-to-end response times of real-time flows

τ1 τ2 τ3 τ4 τ5

Exact 31 31 43 43 33

Trajectory 31 37 46 46 33

Holistic 43 91 64 64 36

Applying Properties 5 and 6, we obtain Table 4 giving the worst case end-
to-end response time of any real-time flow.

7 Conclusion

In this paper, we have focused on non-preemptive Fixed Priority scheduling of
sporadic flows, where all flows sharing the same fixed priority are scheduled
according to Earliest Deadline First. We assume that all flows follow the same
sequence of nodes. With our solution, the scheduling is non-preemptive fp/edf∗:
packets are scheduled first according to their static priorities and second accord-
ing to their absolute deadlines computed on the first node visited and used for
arbitration by all nodes visited. This solution ensures that if a packet m has a
priority higher than a packet m′ on a node, this is true on any visited node.

We have shown how to compute an upper bound on the end-to-end response
time of any flow with a worst case analysis using the trajectory approach. We
have compared these results with the exact values and those provided by the
holistic approach. We have shown that the bound given by the trajectory ap-
proach is reached in various configurations, whereas the holistic approach pro-
vides a bound that can be very pessimistic.

References

1. K. Tindell, A. Burns, A. J. Wellings, Analysis of hard real-time communications,
Real-Time Systems, Vol. 9, pp. 147-171, 1995.

2. J. Liu, Real-time systems, Prentice Hall, New Jersey, 2000.
3. K. Jeffay, D. F. Stanat, C. U. Martel, On non-preemtive scheduling of periodic and

sporadic tasks, IEEE Real-Time Systems symposium, pp. 129-139, San Antonio,
USA, December 1991.

4. L. George, N. Rivierre, M. Spuri, Preemptive and non-preemptive scheduling real-
time uniprocessor scheduling, INRIA Research Report No 2966, September 1996.

5. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An architecture for
Differentiated Services, RFC 2475, December 1998.

6. R. Braden, D. Clark, S. Shenker, Integrated services in the Internet architecture:
An overview, RFC 1633, June 1994.

7. S. Baruah, R. Howell, L. Rosier, Algorithms and complexity concerning the preemp-
tive scheduling of periodic real-time tasks on one processor, Real-Time Systems, 2,
p 301-324, 1990.

8. S. Martin, P. Minet, L. George, FP/EDF, a non-preemptive scheduling combining
fixed priorities and deadlines: Uniprocessor and distributed cases, INRIA Research
Report No 5112, http://www.inria.fr/rrrt/rr-5112.html, Feb. 2004.

The Trajectory Approach for the End-to-End Response Times 247

9. V. Sivaraman, F. Chiussi, M. Gerla, End-to-end statistical delay service under
GPS and EDF scheduling: A comparaison study, INFOCOM’2001, Anchorage,
April 2001.

10. M. Vojnovic, J. Le Boudec, Stochastic analysis of some expedited forwarding net-
works, INFOCOM’2002, New York, June 2002.

11. F. Chiussi, V. Sivaraman, Achieving high utilization in guaranteed services networks
using early-deadline-first scheduling, IWQoS’98, Napo, California, May 1998.

12. L. George, D. Marinca, P. Minet, A solution for a deterministic QoS in multimedia
systems, International Journal on Computer and Information Science, Vol.1, N3,
September 2001.

13. K. Tindell, J. Clark, Holistic schedulability analysis for distributed hard real-time
systems, Microprocessors and Microprogramming, Euromicro Journal, Vol. 40,
1994.

14. J. Le Boudec, P. Thiran, Network calculus: A theory of deterministic queuing
systems for the Internet, Springer Verlag, LNCS 2050, September 2003.

15. A. Parekh, R. Gallager, A generalized processor sharing approach to flow control
in integrated services networks: The multiple node case, IEEE ACM Transactions
on Networking, Vol. 2, 1994.

16. L. Georgiadis, R. Guérin, V. Peris, K. Sivarajan, Efficient network QoS provision-
ing based on per node traffic shaping, IEEE/ACM Transactions on Networking,
Vol. 4, No. 4, August 1996.

17. V. Sivaraman, F. Chiussi, M. Gerla, Traffic shaping for end-to-end delay guarantees
with EDF scheduling, IWQoS’2000, Pittsburgh, June 2000.

18. S. Martin, Mâıtrise de la dimension temporelle de la qualité de service dans les
réseaux, Ph.D. thesis, University of Paris 12, France, July 2004.

Web Service Based Inter-AS Connection

Managements for QoS-Guaranteed DiffServ
Provisioning�

Young-Tak Kim and Hyun-Ho Shin

Advanced Networking Technology Lab, Yeungnam University,
Gyeongsan-Si, Gyeongbuk, 712-749, Korea
ytkim@yu.ac.kr, srobic@hanmail.net

Abstract. In this paper, we propose a Web service based inter-AS (au-
tonomous system) connection management architecture for QoS-
guaranteed DiffServ provisioning. In the proposed architecture, the
interaction between customer network management (CNM) and network
management system (NMS), and the interactions among multiple NMSs
are designed and implemented based on Web service architecture with
WSDL, SOAP/XML and UDDI. The proposed architecture can be easily
implemented in the early stage of MPLS network employment where the
MPLS signaling is not mature yet, and provides efficient internetwork-
ing among multiple Internet Service Providers (ISPs) that is requested
to provide end-to-end QoS-guaranteed differentiated services.

1 Introduction

In Next Generation Internet (NGI), the most important issue is how to provide
efficiently QoS-guaranteed realtime multimedia services with maximized network
utilization. DiffServ-aware-MPLS traffic engineering has been developed as the
most promising solution to provide QoS-guaranteed broadband differentiated
services[1,2,3]. In the DiffServ-aware-MPLS traffic engineering, separated polic-
ing (metering & marking) and queuing are applied to each DiffServ class-type
to guarantee the requested bandwidth and QoS [4,5].

In order to deploy the QoS-guaranteed end-to-end DiffServ-aware-MPLS
traffic engineering functions in Internet environment, several conditions must
be solved : (i) MPLS signaling must be fully supported to establish MPLS
LSP (label switched path) with traffic engineering function, (ii) multiple MPLS
networks must be interconnected to provide end-to-end DiffServ-aware-MPLS
connections for realtime multimedia services, and (iii) an efficient end-user’s on-
demand service request for QoS-guaranteed end-to-end connection establishment
that should be handled dynamically with proper Service Level Agreement (SLA)
processing.

� This work has been supported by Yeungnam University IT Research Center (ITRC)
Project.

W. Dosch, R.Y. Lee, and C. Wu (Eds.): SERA 2004, LNCS 3647, pp. 248–260, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Web Service Based Inter-AS Connection Managements 249

The inter-domain MPLS signaling, however, has not been fully standard-
ized and developed to be used in the inter-networking among MPLS LSRs (label
switched routers) from multiple vendors, and in the internetworking among mul-
tiple domain networks of different network operators[6]. Especially, the MPLS
NNI (network-node interface) signaling has not been well matured. Since the
customer network is usually deployed with Gigabit Ethernet technology, it may
not be able to support connection-oriented MPLS networking functions.

To provide an efficient way to support on-demand QoS-guaranteed differen-
tiated multimedia services dynamically based on semi-permanent MPLS LSPs
before the wide deployment of well-established MPLS signaling, there must be
(i) service access interaction between user terminal (or customer network) and
MPLS network provider, and (ii) inter-domain networking interactions among
multiple subnetworks.

Recently, Web service architecture has been proposed to provide a single
uniform software infrastructure to support a wide range of distributed services,
thereby reducing training and software development costs [7,8]. Since Web ser-
vices are expected to become standard components of future operating systems,
it is expected to be integrated within common office applications [7,8]. For the ef-
ficient provisioning of end-to-end QoS-guaranteed networking services, the Web
service architecture is a good candidate operational model for inter-networking
and network service access, especially when the unified network signaling tech-
nology is not supported well.

In this paper we propose a Web service based distributed connection manage-
ment architecture to provide end-to-end QoS-guaranteed DiffServ-aware-MPLS
services across multiple MPLS domain networks. The distributed connection
management function is designed and implemented with WSDL, SOAP/XML
and UDDI. We designed an on-line network service access scheme between user
terminal and MPLS provider network with SLA function for detailed negotia-
tion on the requirements on QoS parameters, traffic parameters, and application
specific features. We also designed the inter-domain connection management
function among multiple MPLS domain networks.

The rest of this paper is organized as follows. In section 2, some related works
are introduced, and in section 3 the Web service based distributed connection
management architecture is designed in detail. In section 4, the implementation
of NMS and EMS are explained in detail, and finally in section 5, we conclude
this paper.

2 Related Work

2.1 QoS-Guaranteed Service Provisioning with DiffServ-Aware-
MPLS Traffic Engineering

Differentiated Service (DiffServ) technology has been developed to provide differ-
entiated quality-of-service (QoS) according to the user’s requirements and traffic
& QoS parameters of multimedia data flow[1]. The main objective of DiffServ

250 Y.-T. Kim and H.-H. Shin

is to protect the higher-priority premium IP traffic from the lower-priority best-
effort traffic under network congestion. DiffServ by itself, however, only provides
per-hop-based differentiated packet processing with relative priority or weight;
it cannot guarantee QoS or bandwidth.

DiffServ-aware-MPLS has been developed to provide QoS-guaranteed differ-
entiated services by using DiffServ packet processing with connection-oriented
MPLS traffic engineering [2,3]. In DiffServ-aware-MPLS traffic engineering, up
to 8 class-types (ordered aggregates) are defined with different priority or weight,
and the mapping of DiffServ class-types into MPLS LSP is implemented in either
E-LSP or L-LSP model. In E-LSP model, multiple class-types are mapped onto
an MPLS LSP, and the EXP field of the MPLS Shim header conveys the per-hop-
behavior (PHB) (i.e., packet scheduling treatment and packet drop precedence)
to be applied to the packet at each LSR[4].

In order to establish LSPs with guaranteed bandwidth and QoS level to
carry DiffServ traffic, MPLS signaling is required. Currently, two MPLS signaling
standards are under development: RSVP-TE [9] and CR-LDP [10]. Even though
the basic interoperability test of L2VPN and L3VPN among multiple MPLS
switches from various vendors has been demonstrated in MPLS world congress
2003, the MPLS signaling interoperability test over RSVP-TE tunnel has shown
some unresolved configuration issues in a couple of cases [6]. The interoperability
of MPLS signaling with RSVP-TE and CR-LDP will generate further more
complicated interoperability problems.

In order to request QoS-guaranteed service, the end user application must
send a QoS request to the Internet service provider (ISP), as shown in Fig.
1[11]. The admission control agent of ISP network determines the admission of
the requested service/connection provision according to the current network re-
source availability and network operation policy. In the case of inter-networking
environment [12], the QoS request must be delivered to multiple MPLS domain
networks, along the selected shortest route that can provide the requested net-
work resource for the guaranteed QoS provisioning.

The current status of MPLS control plane for admission control and resource
control, however, is usually configured within a domain network without inter-
domain NNI (network-node-interface) signaling function. Also, there is no MPLS
signaling function between customer premises network (CPN) domain and MPLS
edge router of provider network. As a result, we need to devise an efficient on-line
interactive service provisioning mechanism for inter-networking multiple MPLS
domain networks which may easily cooperate with different MPLS signaling ca-
pabilities and their own routing and connection management functions. Web
service architecture can be used to interconnect multiple distributed process-
ing components, such as multiple MPLS domain network management systems
(NMSs).

In this paper, we propose a Web service based distributed connection man-
agement architecture for QoS-guaranteed DiffServ-aware-MPLS networking. The
proposed architecture can be easily implemented in the early stage of MPLS net-
work deployment where the MPLS signaling is not mature yet, and provides inter-

Web Service Based Inter-AS Connection Managements 251

Access
Network

Edge
Router

Edge
Router

Core
Router

Core
Router

Core
Router

Access
Network

End-user
Application

Toolkit

Admission
Control &

Connection Control
Agent

Connection
Control
agent

End-user
Application

Toolkit

Resource
Management

Agent

QoS & connection
setup Request QoS & connection setup Request QoS & connection

Setup Request
Traf

fic
 M

ea
su

re
men

t
Traffic M

easurem
ent

Res
ou

rce
s

Resources

Management Plane

Control Plane

Host Host

Edge
Router

Edge
Router

Core
Router

Core
Router

Core
Router

NNIUNI UNI

Admission
Control &

Connection Control
Agent

QoS & connection
setup Request

Resource
Management

Agent

Bandwidth request brokerage

Access Network QoS Domain 1 QoS

Autonomous System (AS) 1 Autonomous System (AS) 2

Domain 2 QoS Access Network QoS
IPX
QoS

End-to-end QoS, Throughput

Access
Network

Edge
Router

Edge
Router

Core
Router

Core
Router

Core
Router

Edge
Router

Edge
Router

Core
Router

Core
Router

Core
Router

Access
Network

End-user
Application

Toolkit

Admission
Control &

Connection Control
Agent

Connection
Control
agent

End-user
Application

Toolkit

Resource
Management

Agent

QoS & connection
setup Request QoS & connection setup Request QoS & connection

Setup Request
Traf

fic
 M

ea
su

re
men

t
Traffic M

easurem
ent

Res
ou

rce
s

Resources

Management Plane

Control Plane

Host Host

Edge
Router

Edge
Router

Core
Router

Core
Router

Core
Router

Edge
Router

Edge
Router

Core
Router

Core
Router

Core
Router

NNIUNI UNI

Admission
Control &

Connection Control
Agent

QoS & connection
setup Request

Resource
Management

Agent

Bandwidth request brokerage

Access Network QoS Domain 1 QoS

Autonomous System (AS) 1 Autonomous System (AS) 2

Domain 2 QoS Access Network QoS
IPX
QoS

End-to-end QoS, Throughput

Fig. 1. Internetworking of MPLS network

networking among multiple MPLS networks of Internet Service Providers (ISPs)
for end-to-end QoS-guaranteed differentiated service (DiffServ) provisioning.

2.2 Service Level Agreement (SLA) and Related QoS Parameters

In Next Generation Internet, the service description with related parameters for
QoS-guaranteed service will be negotiated between user (client) and the network
operator (server), and will be specified by service level agreement (SLA) [13].
SLA will be translated into detailed service level specification (SLS) that defines
the detailed operational parameters for the requested service provision. SLA/SLS

-Non-technical terms
and conditions

- Technical parameters

- IP service traffic
characteristics

- Offered network
QoS guarantees

- Network QoS
capabilities

- DiffServ edge-to-edge
aggregates

- Generic router
QoS capabilities

- DiffServ core and
edge routers

- Implementation
- Vendor- and

product-specific

Service Level Agreement (SLA)
Transport Service

Service Level Specification (SLS)

QoS class
Per Domain Behavior (PDB)

Per Hop Behavior (PHB)
Traffic Conditioning Block

Per Router Packet Scheduler,
Queuing Parameters,
Algorithmic Dropper

QoS-guaranteed Application Service
-Multimedia

Applications

Specified at
Connection

Establishment,
Distributed by
Signaling and
Management

Function

Determined
at Service

Subscription

Traffic Level Agreement (TLA)

-Non-technical terms
and conditions

- Technical parameters

- IP service traffic
characteristics

- Offered network
QoS guarantees

- Network QoS
capabilities

- DiffServ edge-to-edge
aggregates

- Generic router
QoS capabilities

- DiffServ core and
edge routers

- Implementation
- Vendor- and

product-specific

Service Level Agreement (SLA)
Transport Service

Service Level Specification (SLS)

QoS class
Per Domain Behavior (PDB)

Per Hop Behavior (PHB)
Traffic Conditioning Block

Per Router Packet Scheduler,
Queuing Parameters,
Algorithmic Dropper

QoS-guaranteed Application Service
-Multimedia

Applications

Specified at
Connection

Establishment,
Distributed by
Signaling and
Management

Function

Determined
at Service

Subscription

Traffic Level Agreement (TLA)

Fig. 2. SLA and its implementation

252 Y.-T. Kim and H.-H. Shin

defines the required QoS level, such as end-to-end packet transfer delay, limit of
delay variations (jitter), packet loss ratio, packet error ratio, service availability,
and fault restoration capability. As shown in Fig. 2, the SLS is interpreted
to per-domain behavior (PDB) and per-hop behavior (PHB) to determine the
operational parameters of IP/MPLS router where the packet scheduler, per-
class-type queue and algorithmic dropper is configured. When the MPLS service
provision is provided by multiple inter-networked MPLS domain network, the
PDB is defined for each domain network, and within each domain network PHB
is defined for each IP/MPLS node. The interaction between PHB and IP/MPLS
router can be implemented in SNMP, CLI (command line interface) or COPS
(Common Open Policy Service) protocol [14,15].

2.3 Web Service Architecture

Web services are Extensible Markup Language (XML) applications mapped to
programs, objects, databases and business functions [18]. Web service architec-
ture enables the Internet-based applications to find, access, and automatically
interact with other Internet based applications; Web service provides efficient
mechanism for software-oriented interactions. Web service standards define the
format of the message, specify the interface to which a message is sent, de-
scribe conventions for mapping the contents of the message into and out of the
programs implementing the service, and define mechanisms to publish and to
discover Web services interfaces [18].

Web service is being standardized by the World Wide Web Consortium
(W3C), and promises to provide a single uniform software infrastructure to sup-
port a wide range of distributed services, thereby reducing training and software
development costs [7,8]. In Web service architecture, Web Service Description
Language (WDSL) is used to define the actual Web services, where WSDL is
similar to the IDL (Interface Description Language) of CORBA (Common Ob-
ject Request Broker Architecture) that defines the interface among distributed
computing components; WSDL files include the operations supported by a par-
ticular service, the parameters of these operations, the type of the returned value,
the protocol binding (usually SOAP), and the location of the service (expressed
in the form of a Uniform Resource Identifier, URI)[7,8]. Simple Object Access
Protocol (SOAP) messages can be exchanged over different underlying transfer
protocol, where most people currently envision using SOAP over HTTP/1.1[7]. A
companion standard, Universal Description, Discovery, and Integration (UDDI),
is used to register Web services described in WDSL, and to help the discovery
of WSDL files.

Although Web services have not been specifically designed for management
purposes, we can find it attractive to develop management applications [7], es-
pecially when the local domain network management systems are implemented
by various programming language (i.e. C++ and Java) with different platform
(i.e., C# on MS-Windows, STL on UNIX, and J2EE). Also, we can use the Web
Service architecture to implement following two kinds of inter-domain network-
ing: (i) DiffServ-aware-MPLS service access from the customer network manager

Web Service Based Inter-AS Connection Managements 253

(CNM) to the MPLS network service provider, where MPLS signaling is not
available, and (ii) among MPLS domain networks where MPLS NNI signaling is
not fully mature yet.

3 Web Service Based Distributed Connection
Management Architecture

3.1 Inter-AS (Autonomous System) Traffic Engineering

The provisioning of inter-AS traffic engineering is required to support inter-AS
bandwidth guarantees, inter-AS resource optimization, and fast recovery across
ASs [12]. The inter-AS MPLS traffic engineering must be supported in both (i)
within one SP (service provider) administrative domain, and (ii) across multiple
SP administrative domains. The provisioning of QoS-guaranteed VPN (virtual
private network) in the initial stage of DiffServ-aware-MPLS network deployment
requires inter-AS traffic engineering.

In an intra-AS (autonomous system) MPLS domain network that is oper-
ated by a network operator, the link status and the available network resources
with routing information in the AS can be collected by interior gateway protocol
(IGP), such as ISIS-TE [16] or OSPF-TE [17]. Since the whole intra-AS domain
network is operated and managed by a network operator, the network/link sta-
tus information and policy of resource allocation can be unified, and the whole
network can be operated as a single AS. When the network size becomes large to
cover one nation or to cross continent, however, the network should be divided
into multiple AS domains to solve the scalability problems of IGP link status
flooding and path computations.

As shown inFig. 3,whenmultipleMPLSdomainnetworks are inter-networked,
and the end-to-end service provisioning requires MPLS LSP setup across multiple
MPLS domain networks of different AS’s [11], the reachability information with
the specified bandwidth and QoS requirement of each domain network must be col-
lected and used in the constraint routed shortest path computation. In IP-based
Internet, BGP (Border Gateway Protocol) provides basic inter-networking infor-
mation, such as reachability [18]. The detailed parameters for the DiffServ-aware-
MPLS traffic engineering is not supported yet. For inter-AS DiffServ provisioning,
bandwidth broker model, called BGRP (Board Gateway Reservation Protocol),
has been proposed, but not standardized[11].

As an alternative implementation method of the inter-AS traffic engineering,
the Web service architecture with per-domain network management functions
can be used. Each domain MPLS network is equipped with its own network
management functions to configure the MPLS LSRs, to establish traffic engi-
neering tunnels, and to setup backup path of TE tunnels for fast restoration.
Since the network management functions of each MPLS domain network may
be implemented with different programming languages and development plat-
forms, Web service architecture that can interconnect heterogeneous distributed
computing modules is a good solution for the implementation technology for
inter-AS traffic engineering.

254 Y.-T. Kim and H.-H. Shin

Bandwidth

Broker

Bandwidth

Broker

R1

Intra-AS Resource Control,

Connection Management

ER1 CR

CR

CR

BR1

Intra-AS Resource Control,

Connection Management

BR4 CR

CR

CR

ER1 R2

Bandwidth

Broker

Bandwidth

Broker

Bandwidth

Broker

Inter-AS resource control, Traffic Engineering

Request

Accept

Access

Network

Source

Domain (AS-1)

Destination

Domain (AS-3)

Access

Network

Intra-AS Resource Control,

Connection Management

BR2 CR

CR

CR

BR3

Transit

Domain (AS-2)

Request

Accept

Alternate

Transit Network(s)

Bandwidth

Broker

Bandwidth

Broker

R1R1

Intra-AS Resource Control,

Connection Management

ER1 CR

CR

CR

BR1

Intra-AS Resource Control,

Connection Management

BR4 CR

CR

CR

ER1

Intra-AS Resource Control,

Connection Management

BR4 CR

CR

CR

ER1 R2R2

Bandwidth

Broker

Bandwidth

Broker

Bandwidth

Broker

Inter-AS resource control, Traffic Engineering

Request

Accept

Access

Network

Source

Domain (AS-1)

Destination

Domain (AS-3)

Access

Network

Intra-AS Resource Control,

Connection Management

BR2 CR

CR

CR

BR3

Transit

Domain (AS-2)

Intra-AS Resource Control,

Connection Management

BR2 CR

CR

CR

BR3

Intra-AS Resource Control,

Connection Management

BR2 CR

CR

CR

BR3

Transit

Domain (AS-2)

Request

Accept

Alternate

Transit Network(s)

Fig. 3. Inter-AS Traffic Engineering

3.2 Distributed Connection Management in Multi-domain
DiffServ-Aware-MPLS Service Provision

Fig. 4 shows the overall interaction architecture of distributed connection man-
agement for DiffServ-aware-MPLS service provisioning across multiple domain
networks. The customer premises network (CPN) is managed by a customer
network management (CNM) system. CNM contains end-user application man-
agement functions that initiates QoS-guaranteed service request. Since there is
no MPLS signaling support between the CPN and the edge IP/MPLS router of
ISP network, the interaction between CNM and the NMS with resource manage-
ment and admission control function should be implemented separately to sup-
port on-demand service request and resource allocation function. For flexible on-
line service request and management function, we propose a Web Service based
distributed connection management architecture for DiffServ-aware-MPLS.

An MPLS domain network may contain multiple subnetworks, where each
subnetwork is controlled and managed by an EMS (element management sys-
tem). The interaction between NMS and EMS can be implemented by SOAP
or RMI. Each EMS must register its available services and resources to NMS.
The interaction between EMS and the network element (NE), such as IP/MPLS
router and transmission system is usually implemented by SNMP or CLI. More
detailed functions among NMS, EMS and NE in Web service architecture will
be given in following subsections.

3.3 Web Service Based Inter-AS Traffic Engineering and
Connection Management Architecture

The most important function of inter-AS traffic engineering on multiple MPLS
domain networks is (i) how to configure bandwidth guaranteed traffic engineer-
ing tunnels across multiple domain networks, (ii) how to optimize the resource
utilization, and (iii) how to provide efficient fast recovery of traffic engineering

Web Service Based Inter-AS Connection Managements 255

Management Plane

End-to-End QoS

NGN Backbone Network Performance/QoS
Access Network

QoS

Access Network

QoS

Control Plane

Connection
Control
agent

intra-domain
MPLS

Signaling

Resource
Manager &
Admission
Controller

Connection
Control
agent

Resource
Manager &
Admission
Controller

Autonomous System (AS) 1 Autonomous System (AS) 2

NNI

QoS-guaranteed

DiffServ-aware-MPLS Transport Network

UNI

Customer Premises
Network (CPN) A

UNI

Customer Premises
Network (CPN) B

User/Data Plane

Customer
Network
Manager

Customer
Network
Manager

Connection
Control
agent

IP Router IP RouterIP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

Connection
Control
agent

intra-domain
MPLS

Signaling

Management Plane

End-to-End QoS

NGN Backbone Network Performance/QoS
Access Network

QoS

Access Network

QoS

Control Plane

Connection
Control
agent

intra-domain
MPLS

Signaling

Resource
Manager &
Admission
Controller

Connection
Control
agent

Resource
Manager &
Admission
Controller

Autonomous System (AS) 1 Autonomous System (AS) 2

NNI

QoS-guaranteed

DiffServ-aware-MPLS Transport Network

UNI

Customer Premises
Network (CPN) A

UNI

Customer Premises
Network (CPN) B

User/Data Plane

Customer
Network
Manager

Customer
Network
Manager

Connection
Control
agent

IP RouterIP Router IP RouterIP RouterIP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

IP/MPLS
Router

Connection
Control
agent

intra-domain
MPLS

Signaling

Fig. 4. Web service based QoS-guaranteed internetworking of DiffServ-aware-MPLS

network

tunnels across ASs. For efficient inter-AS traffic engineering and connection man-
agement, the connection reachability and availability of resource in each domain
network must be provided to network management systems (NMSs).

As shown in Fig. 4, the NMS of each MPLS domain registers WSDL that
describes its network service to the inter-domain MPLS network management
server. The registered information for inter-AS traffic engineering must include
available bandwidth and QoS among edge routers of the domain network, con-
nectivity to neighbor AS, and reachability to other ISPs. When the inter-AS
traffic engineering is operated among ASs of different ISP, the detailed infor-
mation of available network resource may not be provided because of network
security or internal policy; but even in this case, the contact information to re-
quest an inter-domain LSP connection setup will be registered and provided to
other domain networks.

Each NMS can discover its neighbor domain network, the delegate NMS for
the neighbor domain network, connectivity, and available bandwidth & QoS.
Using the UDDI repository, the CNM can find the NMS to which it can send
a service request. The ingress NMS evaluates the connection admission condi-
tion, and makes decision. When a connection request is accepted, the required
network resource must be allocated. If the requested connection reaches beyond
an ISP’s domain network, multiple MPLS domains must collaborate with inter-
networking function to find the shortest path to the destination while guaran-
teeing the requested QoS and bandwidth.

3.4 Interactions Between NMS and EMS

For each domain network, an NMS may control multiple EMSs (element man-
agement systems) where each EMS controls a sub-domain MPLS network. EMS

256 Y.-T. Kim and H.-H. Shin

EMS Functions

(MPLS Domain

Subnetwork View)

NMS Functions

(End-to-end

Network View)

UDDI Repository

(EMS services)

EMS Service

Register

SOAP/Socket

Configuration

Management

Connection

Management

Performance

Management

Fault

Management

XML Content

Repository

SOAP schema and

XML Style Manager;

XML-XSLT Mapping

XML Backend Adaptor

Web Service

Directory

Local

Resource

Repository

Database

Network Management

System (NMS)

Autonomous System (AS)

PE

IP/MPLS
Router

P

IP/MPLS
Router

PE

IP/MPLS
Router

Network

Element (NE)

EMS Functions

(MPLS Domain

Subnetwork View)

NMS Functions

(End-to-end

Network View)

UDDI Repository

(EMS services)

EMS Service

Register

SOAP/Socket

Configuration

Management

Connection

Management

Performance

Management

Fault

Management

XML Content

Repository

SOAP schema and

XML Style Manager;

XML-XSLT Mapping

XML Backend Adaptor

Web Service

Directory

Local

Resource

Repository

Database

Network Management

System (NMS)

Autonomous System (AS)

PE

IP/MPLS
Router

PE

IP/MPLS
Router

IP/MPLS
Router

P

IP/MPLS
Router

P

IP/MPLS
Router

IP/MPLS
Router

PE

IP/MPLS
Router

PE

IP/MPLS
Router

IP/MPLS
Router

Network

Element (NE)

Fig. 5. Interactions between NMS and EMS

provides basic network configuration, traffic engineering tunnel establishment,
node/link protection mode setup, and configuration of fault notification and fast
restoration. The EMS is tightly integrated with the signaling module of control
plane for on-demand dynamic connection establishment. In the initial stage of
MPLS network provisioning, where MPLS signaling function is not fully mature,
the EMS is used to provide traffic engineering tunnel (TE-LSP) establishments.

The EMS may be implemented by various programming language and plat-
forms. Usually, the network element(NE, i.e. MPLS LSR) is developed together
with its related EMS function for local management and test purpose. In order to
provide interactions among EMS functions and the NMS function, the basic EMS
functions must be registered in the UDDI repository of the NMS as shown in Fig.
5. The NMS, that is responsible for the network, can discover the EMS functions
for the management of subnetwork connection setup via SOAP/HTTP protocol.

Since the Web Service architecture is currently supported by only Microsoft
.NET and SUN J2EE, if the EMS has been implemented on UNIX platform, the
legacy EMS function modules programmed in C++ must be adapted to JAVA
J2EE. The XML backend adapter module in Fig. 5 provides the adaptation for
legacy EMS modules.

4 Implementations and Analysis

4.1 Implementations of Web Service Based Inter-AS Distributed
Connection Management

Fig. 6 shows the overall interactions among CNM, NMS, EMS, and Web server
with UDDI registry. When CNM receives a user’s request to establish a DiffServ-

Web Service Based Inter-AS Connection Managements 257

Fig. 6. Interactions among NMS, EMS and CNM

aware-MPLS connection, it discovers available services from the Web server, lo-
cating the specific NMS to which the CPN is subscribed. The CNM then requests
the connection establishment to the NMS providing required parameters such as
destination address, bandwidth, and QoS. The ingress NMS then performs rout-
ing to find the QoS-guaranteed shortest path to the destination customer edge.
When the specified destination is not within the same AS of the ingress NMS,
the ingress NMS must discover a possible shortest route to the destination, the
ASs along the route, and the transit NMSs.

By discovering the transit ASs and NMSs, the ingress NMS can also get
the access methods of the transit NMS, by which it can request to establish
a DiffServ-aware-MPLS LSP segment across the AS. The connection setup re-
quests are delivered via SOAP/HTTP protocol. If multiple transit ASs must
be interconnected for the end-to-end LSP, the same operation is repeated for
each domain until the LSP reaches at the egress NMS. Each transit NMS then
establishes the required subnetwork connection by interactions with EMS.

4.2 Implementation of EMS

EMS (element management system) configures, controls and manages each net-
work element (NE) node. EMS has been implemented with C++ STL on UNIX
platform. Since current Java 1.4 environment supports SOAP 1.1 specification,
there is no easy way to directly interact C++ module and Java module through
SOAP protocol. When Java 1.5 supports SOAP 1.2 specification, C++ based
EMS and Java based NMS can be inter-connected through SOAP, easily. Cur-
rently, we are using XML/socket protocol to deliver connection request messages
to EMS, and reply messages to NMS.

The LSP Setup operation of the EMS is registered to the managing NMS that
establishes a subnetwork connection (SNC). The requested arguments of band-
width and QoS parameters are passed by XML string. Since the EMS should
be implemented as a single network management system on UNIX operating
system that provides node protection for fault tolerance, the interaction of NMS
and EMS with Web service architecture should be implemented based on J2EE

258 Y.-T. Kim and H.-H. Shin

platform with security. The XML backend adapter will be designed and imple-
mented to map the SOAP/XML based LSP setup request to the C++ based
connection management module.

4.3 Implementation of NMS

Fig. 7 shows the architecture of NMS with Web Service functions. Each NMS
contains the network management functions for the AS domain network, such as
admission control, SLA/SLS/TLS policy management, virtual topology network
configuration for QoS-guaranteed DiffServ provisioning, bandwidth negotiation
for transit network configuration, configuration management, connection man-
agement, performance management and fault management.

Fig. 7. NMS Functional Architecture

Currently, Apache AXIS and JAX-RPC(DII) are used to provide XML/SOAP
based interactions amongNMSsandCNM-NMS.JDOMisused inNMSandXerces
C++ 2.5 XML parsing is used in EMS which is implemented with C++/Solaris.
JWSDP with JAXR is used to provide interactions between UDDI registry and
NMS/EMS.

5 Conclusion

In this paper, we proposed a Web service based inter-AS distributed connection
management architecture for QoS-guaranteed DiffServ-aware-MPLS networking.
In the proposed architecture, the interaction between customer network man-
agement (CNM) and network management system (NMS), and the interaction

Web Service Based Inter-AS Connection Managements 259

among multiple NMSs are designed and implemented based on Web service ar-
chitecture with WSDL, SOAP/XML and UDDI registry.

Currently we are developing the proposed inter-AS distributed DiffServ-
aware-MPLS connection management system with Web service architecture,
based on J2EE platform. The basic operations to setup a DiffServ-aware-MPLS
LSP has been tested on a small scale testbed network that composed of 5 Cisco
7200 series MPLS routers for PE (Provider Edge), P (Provider node) and 4
Cisco 3620 series IP/MPLS routers for CE (Customer Edge). The performance
evaluations of the connection setup delay, scalability and hierarchical connection
management are under development.

The proposed architecture can be easily implemented in the early stage of
MPLS network employment where the MPLS signaling is not mature yet, and
provides internetworking among multiple Internet Service Providers (ISPs) that
is required for end-to-end QoS-guaranteed service provisioning.

References

1. IETF mpls working group, ”Multi-protocol Label Switching Architecture,” IETF
Internet Draft, draft-ietf-mpls-arch-05,(1999).

2. RFC 2475, ”An Architecture of Differentiated Services,” December 1998.

3. RFC 3031, ”Multiprotocol Label Switch (MPLS) Architecture,” April 2002.

4. RFC 3270, ”Multiprotocol Label Switching (MPLS) support of Differentiated Ser-
vices,” April 2002.

5. RFC 3564, ”Requirements for support of Differentiated Service aware MPLS traffic
engineering,” July 2003.

6. Youngtak Kim and Chul Kim, ”QoS-guaranteed DiffServ-aware-MPLS Traffic En-
gineering with Controlled Bandwidth Borrowing,” Proc. of ACIS International
Conference on Software Engineering Research & Applications (SERA‘03), San
Francisco, U.S.A., June 25-27, 2003, pp. 112-117.

7. MPLS World Congress 2003, http://www.upperside.fr/mplswc2003/mplswc03pro.
htm, MPLS Forum.

8. Jurgen Schonwalder, Aiko Pras and Jean-Philippe Martin-Flatin, ”On the Future of
Internet Management Technologies,” IEEE Communication Magazine, Oct. 2003,
pp. 90-97.

9. Eric Newcomer, Understanding Web Services, Addison Wesley professional, 2002.

10. RFC 3209, ”RSVP-TE: Extensions to RSVP for LSP tunnels,” December 2001.

11. IETF Draft, ”Constraint-Based LSP Setup using LDP,” Feb. 2001.

12. Thomas Engel et. al, ”AQUILA: Adaptive Resource Control for QoS using an IP-
based Layered Architecture,” IEEE Communication Mag., Jan. 2003, pp. 46-53.

13. IETF Draft, ”MPLS Inter-AS Traffic Engineering requirements,” draft-ietf-tewg-
interas-mpls-te-req-05.txt, 2000.

14. Eleni Mykoniati et. al, ”Admission Control for Providing QoS in DiffServ IP Net-
works: The TEQUILA Approach,” IEEE Communication Mag., Jan. 2003, pp.
38-44.

15. J. Boyle et al., ”The COPS (Common Open Policy Service) Protocol,” RFC 2748,
Jan. 2000.

16. K. Chan et al., ”COPS Usage for Policy Provisioning,” RFC 3084, Mar. 2001.

260 Y.-T. Kim and H.-H. Shin

17. IETF Internet Draft, ”IS-IS extensions for Traffic Engineering,”draft-ietf-isis-
traffic-05.txt, Aug. 2003 (work in progress).

18. IETF Internet Draft, ”Traffic Engineering Extensions to OSPF,” draft-ietf-ospf-
ospfv3-traffic-01.txt, June 2001 (work in progress).

19. IETF RFC 3107, ”Carrying Label Information in BGP-4,” May 2001.

Author Index

Araban, Saeed, 171

Baik, Doo-Kwon, 81, 123

Cha, Jung Eun, 42
Cha, Sungdeok, 19
Chiang, Chia-Chu, 156
Cho, Eun Sook, 42
Cho, Jaemyung, 19
Chung, Lawrence, 29
Conover, Adam J., 201

Dai, Jie, 92
Dosch, Walter, 1

George, Laurent, 229

Hong, Jeewon, 108
Hu, Gongzhu, 92
Hwang, Sun-Myung, 71

Jeong, Dongwon, 81, 123

Kang, Byeongdo, 138
Kim, Haeng-Kon, 58
Kim, Heechern, 108
Kim, Hye-Mee, 71
Kim, Young-Gab, 81
Kim, Young-Tak, 248

Lee, Byungjeong, 108
Lee, Kyung-whan, 187
Lee, Roger Y., 156
Liao, Kexiao, 92

Martin, Steven, 229
Minet, Pascale, 229

Park, Jeong-hwan, 187
Park, Soo-Hyun, 81

Ramamoorthy, C.V., 214
Roger Y. Lee, 58

Sajeev, A.S.M., 171
Seker, Remzi, 214
Shin, Hyun-Ho, 248
Shin, Shinae, 123
Song, Ki-won, 187
Song, Yeong-Tae, 201
Stümpel, Annette, 1
Supakkul, Sam, 29

Wu, Chisu, 108

Yang, Hae-Sool, 58, 156
Yang, Young Jong, 42
Yoo, Junbeom, 19

	Frontmatter
	Formal Methods and Tools
	Transforming Stream Processing Functions into State Transition Machines
	NuEditor -- A Tool Suite for Specification and Verification of NuSCR

	Requirements Engineering and Reengineering
	Representing NFRs and FRs: A Goal-Oriented and Use Case Driven Approach
	MARMI-RE: A Method and Tools for Legacy System Modernization

	Component-Based Software Engineering
	A Study on Frameworks of Component Integration for Web Applications

	Software Process Models, Management and Improvement
	A Study on Metrics for Supporting the Software Process Improvement Based on SPICE

	Information Engineering
	Uniformly Handling Metadata Registries
	Network Layer XML Routing Using Lazy DFA

	Web Engineering and Web-Based Applications
	Extending UML for a Context-Based Navigation Modeling Framework of Web Information Systems
	Conversion of Topic Map Metadata to RDF Metadata for Knowledge Retrieval on the Web
	An Integrated Software Development Environment for Web Applications

	Parallel and Distributed Computing
	On the Design and Implementation of Parallel Programs Through Coordination

	Software Reuse and Metrics
	Reusability Analysis of Four Standard Object-Oriented Class Libraries
	Validation of an Approach for Quantitative Measurement and Prediction Model

	Object-Oriented Technology and Information Technology
	Slicing Java<Superscript>TM</Superscript> Programs Using the JPDA and Dynamic Object Relationship Diagrams with XML
	Infrastructures for Information Technology Systems: Perspectives on Their Evolution and Impact

	Communications Systems and Networks
	The Trajectory Approach for the End-to-End Response Times with Non-preemptive FP/EDF*
	Web Service Based Inter-AS Connection Managements for QoS-Guaranteed DiffServ Provisioning

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

